K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác HDEI có

\(\widehat{EDH}=\widehat{DHI}=\widehat{EIH}=90^0\)

=>HDEI là hình chữ nhật

b:

Xét ΔAHD có \(\widehat{AHD}=90^0\) và HA=HD

nên ΔAHD vuông cân tại H

=>\(\widehat{ADH}=45^0\)

Xét tứ giác AEDB có 

\(\widehat{EAB}+\widehat{EDB}=90^0+90^0=180^0\)

=>AEDB là tứ giác nội tiếp

=>\(\widehat{AEB}=\widehat{ADB}=\widehat{ADH}=45^0\)

Xét ΔAEB vuông tại A có \(\widehat{AEB}=45^0\)

nên ΔAEB vuông cân tại A

=>AE=AB

 

7 tháng 12 2023

cho mình xin cái hình đc ko

14 tháng 2 2022

bạn đăng từng bài nhé

Bài 3:

\(AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4^2}=2\sqrt{13}\left(cm\right)\)

BC=13cm

=>\(AC=3\sqrt{13}\left(cm\right)\)

22 tháng 10 2016

@soyeon_Tiểubàng giải

@Nguyễn Huy Tú

@Phương An

@Trần Việt Linh

Bài 1:

a: Xét ΔBAC vuông tại A có 

\(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{C}=60^0\)

Xét ΔBAC vuông tại A có 

\(AB=BC\cdot\sin60^0\)

\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)

a: ΔBAC vuông tại B có góc A=45 độ

nên ΔBAC vuông cân tại B

=>BA=BC=2a

AC=căn AB^2+BC^2=2a*căn 2

b: BH=BA*BC/AC=4a^2/2*a*căn 2=a*căn 2

c: S ABC=1/2*2a*2a=2a^2

d: C=2a+2a+2a*căn 2=4a+2a*căn 2

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

b: ta có: ΔABC\(\sim\)ΔHBA

nên BA/BH=BC/BA

hay \(BA^2=BH\cdot BC\)

10 tháng 5 2022

a.Xét tam giác ABC và tam giác HBA, có:

^B: chung

^BAC = ^BHA = 90 độ

Vậy tam giác ABC đồng dạng tam giác HBA (g.g)

b.\(\rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\)

\(\Leftrightarrow AB^2=BH.BC\left(đfcm\right)\) (1)

c.Áp dụng định lý pitago \(\Rightarrow BC=\sqrt{6^2+10^2}=2\sqrt{34}\left(cm\right)\)

(1) \(\Leftrightarrow6^2=2\sqrt{34}BH\)

\(\Leftrightarrow BH=\dfrac{9\sqrt{34}}{17}\left(cm\right)\)

Áp dụng định lý pitago trong tam giác ABH \(\Rightarrow AH=\sqrt{6^2-\left(\dfrac{9\sqrt{34}}{17}\right)^2}=\dfrac{15\sqrt{34}}{17}\left(cm\right)\)

Kẻ phân giác BK

Xét ΔABK vuông tại A có 

\(\tan\widehat{ABK}=\dfrac{AK}{AB}\)

\(\Leftrightarrow\tan\dfrac{\widehat{ABC}}{2}=\dfrac{AK}{AB}\)(1)

Xét ΔABC có BK là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AK}{AB}=\dfrac{KC}{BC}\)(Tính chất đường phân giác)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AK}{AB}=\dfrac{KC}{BC}=\dfrac{AK+KC}{AB+BC}=\dfrac{AC}{AB+BC}\)(2)

Từ (1) và (2) suy ra \(\tan\dfrac{\widehat{ABC}}{2}=\dfrac{AC}{AB+BC}\)

28 tháng 6 2021

Góc ABC nghenn mik ghii nhầm

 

a: Xét ΔCMD vuông tại M và ΔCAB vuông tại A có

góc C chung

=>ΔCMD đồng dạng với ΔCAB

b: Xét ΔBMI vuông tại M và ΔBAC vuông tại A có

góc MBI chung

=>ΔBMI đồng dạng với ΔBAC

=>BM/BA=BI/BC

=>BM*BC=BA*BI

c: ΔCMD đồng dạng với ΔCAB

=>CM/CA=CD/CB

=>CM/CD=CA/CB

=>ΔCMA đồng dạng với ΔCDB

=>S CMA/S CDB=(CA/CB)^2=1/4

=>S CMA=15cm2

1 tháng 6 2023

Gọi \(I\) là giao điểm của \(AM\) và \(BN\Rightarrow IB=\dfrac{2}{3}BN;IN=\dfrac{1}{3}BN;AI=\dfrac{2}{3}AM;IM=\dfrac{1}{3}AM\)

\(\Delta ANB\) vuông tại \(A:AI^2=IB.IN\) \(\Rightarrow AI^2=\dfrac{2}{3}BN\cdot\dfrac{1}{3}BN=\dfrac{2}{9}BN^2\)

Ta cũng có trong \(\Delta ANB:AB^2=IB.BN\)

\(\Leftrightarrow a^2=\dfrac{2}{3}BN\cdot BN=\dfrac{2}{3}BN^2\Leftrightarrow BN^2=\dfrac{3}{2}a^2\)

Suy ra : \(AI^2=\dfrac{2}{9}BN^2=\dfrac{2}{9}\cdot\dfrac{3}{2}a^2=\dfrac{1}{3}a^2\).

Lại có : \(AI=\dfrac{2}{3}AM\Rightarrow AM^2=\dfrac{9}{4}AI^2=\dfrac{9}{4}\cdot\dfrac{1}{3}a^2=\dfrac{3}{4}a^2\)

\(AM\) là đường trung tuyến ứng với cạnh huyền \(BC\) của \(\Delta ABC\) vuông tại \(A\Rightarrow AM=\dfrac{1}{2}BC\Rightarrow BC^2=4AM^2=4\cdot\dfrac{3}{4}a^2=3a^2\)

\(\Rightarrow BC=\sqrt{3a^2}=a\sqrt{3}\)

\(\Delta ABC\) vuông tại \(A\) có : \(BC^2=AB^2+AC^2\left(Pythagoras\right)\)

\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{3a^2-a^2}=a\sqrt{2}\)

Vậy : \(AC=a\sqrt{2};BC=a\sqrt{3}\)

1 tháng 6 2023

a: \(BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\)

b: Xét ΔABC vuông tại A và ΔADC vuông tại A có

AC chung

AB=AD

Do đó: ΔABC=ΔADC

c: Ta có: ΔABC=ΔADC

nên BC=DC

hay ΔCBD cân tại C