Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE
a) Kẻ EK vuông góc với AH
Ta có: góc KHD=góc EDH=90 độ
Mà góc KHD và góc EDH là 2 góc đồng vị nên KH//DE
Lại có: góc HKE=góc DHK=90 độ
Mà góc HKE và góc DHK là 2 góc đồng vị nên HD//KE
Vì KH//DE; HD//KE nên HD=KE( tính chất đoạn chắn)
Mà HD=AH nên KE=AH
Vì tam giác ABC vuông tại A nên góc BAH+ góc HAC=90 độ
Vì tam giác AKE vuông tại K nên góc KAE+góc KEA=90 độ
Do đó: góc BAH= góc KEA
Xét tam giác AHB và tam giác EKA có:
góc AHB=góc EKA=90 độ
AH=KE (cmt)
góc BAH=góc AEK (cmt)
=> tam giác AHB=tam giác EKA (g.c.g)
=> AB=AE
b) Vì M là trung điểm của cạnh BE nên AM là đường trung tuyến của tam giác ABE
Mà tam giác ABE vuông tại A nên AM=\(\frac{1}{2}\)BE (1)
M là trung điểm của BE nên DM là đường trung tuyến của tam giác BDE
Mà tam giác BDE vuông tại D nên DM=\(\frac{1}{2}\)BE (2)
Từ (1) và (2) => AM=DM
Xét tam giác HMA và tam giác HMD có:
HM:chung
AH=HD
AM=DM
=> tam giác HMA=tam giác HMD ( c.c.c)
=> góc AHM=góc DHM = \(\frac{1}{2}\)AHD
Mà góc AHD=90 độ nên góc AHM= 90 độ :2 = 45 độ
a, \(\Delta ABD=\Delta EBD\left(c.g.c\right)\left(1\right)\)
b, Từ \(\left(1\right)\Rightarrow\widehat{BAD}=\widehat{BED}\)( 2 góc tướng ứng ) hay \(\widehat{BAC}=\widehat{HED}\)
\(\Rightarrow\widehat{HED}=90^0\Rightarrow DE\perp BC\)
Mà \(AH\perp BC\left(gt\right)\Rightarrow DE//AH\Rightarrow ADEH\)là hình thang
cùng với \(\widehat{HED}=90^0\)nên ADEH là hình thang vuông.
c, Từ (1) \(\Rightarrow DA=DE\)
Lại có \(BA=BE\left(gt\right)\Rightarrow BD\)là đường trung trực của đoạn thẳng AE
\(\Rightarrow BD\perp AE\)
\(AH\perp BE\left(gt\right)\), AH giao BD tại I
Do đó: I là trực tâm của \(\Delta ABE\Rightarrow EF\perp AB\)
Mặt khác, \(\Delta ABC\)vuông tại A (gt) nên \(AB\perp AC\)
Từ đó dẫn đến ACEF là hình thang vuông
Chúc bạn học tốt
a: Xét tứ giác HDEI có
\(\widehat{EDH}=\widehat{DHI}=\widehat{EIH}=90^0\)
=>HDEI là hình chữ nhật
b:
Xét ΔAHD có \(\widehat{AHD}=90^0\) và HA=HD
nên ΔAHD vuông cân tại H
=>\(\widehat{ADH}=45^0\)
Xét tứ giác AEDB có
\(\widehat{EAB}+\widehat{EDB}=90^0+90^0=180^0\)
=>AEDB là tứ giác nội tiếp
=>\(\widehat{AEB}=\widehat{ADB}=\widehat{ADH}=45^0\)
Xét ΔAEB vuông tại A có \(\widehat{AEB}=45^0\)
nên ΔAEB vuông cân tại A
=>AE=AB
cho mình xin cái hình đc ko