K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 12 2023

Lời giải:
Với $x,y$ là số tự nhiên thì:

$15x=5.3x\vdots 5; 20y=5.4y\vdots 5$

$\Rightarrow 15x+20y\vdots 5$

Mà $2021^{2022}\not\vdots 5$

$\Rightarrow$ không tồn tại $x,y$ tự nhiên thỏa mãn đề bài.

17 tháng 12 2023

\(\left(x-y\right)\left(y+1\right)+y=15\)

=>\(\left(x-y\right)\left(y+1\right)+y+1=16\)

=>(y+1)(x-y+1)=16

mà x,y là các số tự nhiên

nên \(\left(y+1\right)\left(x-y+1\right)=1\cdot16=2\cdot8=4\cdot4=8\cdot2=16\cdot1\)

=>\(\left(y+1;x-y+1\right)\in\left\{\left(1;16\right);\left(2;8\right);\left(4;4\right);\left(8;2\right);\left(16;1\right)\right\}\)

=>\(\left(y;x-y+1\right)\in\left\{\left(0;16\right);\left(1;8\right);\left(3;4\right);\left(7;2\right);\left(15;1\right)\right\}\)

=>\(\left(y,x\right)\in\left\{\left(0;15\right);\left(1;8\right);\left(3;6\right);\left(7;8\right);\left(15;15\right)\right\}\)

21 tháng 12 2015

 Do 10 = 1.10 =10.1 = 2.5 = 5.2 
Mà 2x + 1 lẻ nên 2x + 1 = 1 hoặc 2x + 1 = 5 
=> x = 0 hoặc 2 nhưng x = 0 thì x.y = 0 nên ta chọn x = 2 khi đó y - 3 = 2 
=> y = 5 
Vậy khi đó x.y lớn nhất là : x.y = 2.5 = 10

21 tháng 12 2015

 

2x+1 là số lẻ

=> (2x+1)(y-3) = 1.10 = 5.2

+ 2x+1 =1 => x =0 và y -3 =10 => y =13

+ 2x +1 = 5 => x =2 và y-3 =2 => y =5

Tích xy lớn nhất = 2.5 khi x =2 và y =5

16 tháng 10 2016

a)\(5x-xy=12\)

\(\Leftrightarrow x\left(4x-y\right)=12\)

<=>x và 4x-y thuộc Ư(12)=...

thay vào làm

 

16 tháng 10 2016

b) \(2x+11=y\left(x+3\right)\)

\(\Rightarrow2x+11-xy-3y=0\)

\(\Rightarrow\left(2x-xy\right)+11-3y=0\)

\(\Rightarrow x\left(2-y\right)+6-3y=-5\)

\(\Rightarrow x\left(2-y\right)+3\left(2-y\right)=-5\)

\(\Rightarrow\left(x+3\right)\left(2-y\right)=-5\)

\(\Rightarrow x+3;2-y\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\)

Xét \(x+3=1\Rightarrow x=-2\Rightarrow2-y=5\Rightarrow y=-3\)(loại vì \(x,y\in N\))

Xét \(x+3=-1\Rightarrow x=-4\Rightarrow2-y=-5\Rightarrow y=7\)(loại vì \(x,y\in N\))

Xét \(x+3=5\Rightarrow x=2\Rightarrow2-y=1\Rightarrow y=1\) (thỏa mãn)

Xét \(x+3=-5\Rightarrow x=-8\Rightarrow2-y=-1\Rightarrow y=3\)(loại vì \(x,y\in N\))

Vậy pt có nghiệm (x,y)=(2;1) thỏa mãn

 

 

21 tháng 4 2019

2.(xy - 3) = x

=> 2xy - 6 = x

=> 2xy - x = 6

=> x.(2y - 1) = 6

Vậy x và 2y -1 thuộc ước của 6

tới đây dễ rồi bạn nhé :D => bạn tự làm nhé, bye

12 tháng 12 2019

dạnh toán này quá cao siêu quá,ko phù hợp vs em...hs lớp 6

NV
23 tháng 1

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2-6y+9\right)=5\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y-3\right)^2=5\)

\(\Leftrightarrow\left(x-2y\right)^2=5-\left(y-3\right)^2\) (1)

Do \(\left(x-2y\right)^2\ge0;\forall x;y\)

\(\Rightarrow5-\left(y-3\right)^2\ge0\Rightarrow\left(y-3\right)^2\le5\)

\(\Rightarrow\left[{}\begin{matrix}\left(y-3\right)^2=0\\\left(y-3\right)^2=1\\\left(y-3\right)^2=4\end{matrix}\right.\)

Thay vào (1):

- Với \(\left(y-3\right)^2=0\)  \(\Rightarrow\left(x-2y\right)^2=5\) vô nghiệm do 5 ko phải SCP

- Với \(\left(y-3\right)^2=1\Rightarrow\left[{}\begin{matrix}y=4\\y=2\end{matrix}\right.\)

\(y=4\Rightarrow\left(x-8\right)^2=4\Rightarrow\left[{}\begin{matrix}x=10\\x=6\end{matrix}\right.\)

\(y=2\Rightarrow\left(x-4\right)^2=4\Rightarrow\left[{}\begin{matrix}x=6\\x=2\end{matrix}\right.\)

- Với \(\left(y-3\right)^2=4\Rightarrow\left[{}\begin{matrix}y=5\\y=1\end{matrix}\right.\)

\(y=5\Rightarrow\left(x-10\right)^2=1\Rightarrow\left[{}\begin{matrix}x=11\\x=9\end{matrix}\right.\)

\(y=1\Rightarrow\left(x-2\right)^2=1\Rightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

Em tự kết luận các cặp nghiệm

NV
23 tháng 1

Chắc phải là cặp số nguyên chứ có vô số cặp x;y bất kì thỏa mãn pt này