K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

a) \(^{8^5}\)= (   \(2^3\)) ^ 5 = \(^{2^{15}}\)= 2^14 . 2

3.4^7= 3 . 2^14

Vì 3 > 2 nên 8^5 < 3.4^7

b) 202^303 = ( 2. 100 ) ^ 3.101 = ( 2^3 . 101^3 ) ^ 100 = ( 8 . 101^3 ) ^ 101

303^202 = ( 3 . 101 ) ^ 2 . 101= ( 3^2 . 101^2 ) ^ 100 = ( 9 . 101^2 )

Vì Vì 8.101^3 = 8. 101 . 101^2 > 9 . 101^2

Nên 202^3 > 3036202

c) 3^500 = ( 365 ) ^ 100 = 243^100

7^300 = ( 7^3 ) ^ 100 = 343^100

Vì 243 < 343

Nên 3^500 < 7^300

9 tháng 8 2017

Đúng 100 % nếu  sai thì ko chịu trách nhiệm đâu
 

19 tháng 8 2023

a) \(2^{300}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=\left(3^2\right)^{100}=9^{100}>8^{100}\)

\(\Rightarrow2^{300}< 3^{200}\)

b) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\Rightarrow99^{20}< 9999^{10}\)

c) \(3^{500}=\left(3^5\right)^{100}=243^{100}\)

\(7^{300}=\left(7^3\right)^{100}=343^{100}>243^{100}\)

\(\Rightarrow3^{500}< 7^{300}\)

19 tháng 8 2023

Giải chi tiết giúp mình ạ~

8 tháng 11 2017

Đáp án cần chọn là: A

9 tháng 9 2021

Ý A nhé bạn

chúc học tốt

4 tháng 10 2023

ko bít nữa

 

4 tháng 10 2023

202³⁰³ = (202³)¹⁰¹ = 8242408¹⁰¹

303²⁰² = (303²)¹⁰¹ = 91809¹⁰¹

Do 8242408 > 91809 nên 8282408¹⁰¹ > 91809¹⁰¹

Vậy 202³⁰³ > 303²⁰²

13 tháng 3 2023

a >

B <

13 tháng 3 2023

a)Ta có : 404303/303202=1+101101/303202

303202/202101=1+101101/202101

Do 101101/303202<101101/202101 ⇒404303/303202>303202/202101

24 tháng 10 2021

a: \(2^{300}=8^{100}\)

\(3^{200}=9^{100}\)

mà 8<9

nên \(2^{300}< 3^{200}\)

b: \(3^{500}=243^{100}\)

\(7^{300}=343^{100}\)

mà 243<243

nên \(3^{500}< 7^{300}\)

13 tháng 7 2023

a) \(2^x=16=2^4\Rightarrow x=4\)

b) \(x^3=27=3^3\Rightarrow x=3\)

c) \(x^{50}=x\Rightarrow x\left(x^{49}-1\right)=0\Rightarrow x=0\) hay \(x=1\)

d) \(\left(x-2\right)^2=16=4^2\Rightarrow x-2=4\) hay \(x-2=-4\)

\(\Rightarrow x=6\) hay \(x=-2\)

 

13 tháng 7 2023

a) \(2^{300}=2^{3.100}=8^{100}\)

\(3^{200}=3^{2.100}=9^{100}\)

vì \(8^{100}< 9^{100}\)

\(\Rightarrow2^{300}< 3^{200}\)

b) \(3^{500}=3^{5.100}=243^{100}\)

\(7^{300}=7^{3.100}=343^{100}\)

vì \(243^{100}< 343^{100}\)

\(\Rightarrow3^{500}< 7^{300}\)

 

29 tháng 6 2021

a, Ta có : \(8>7\)

\(\Rightarrow2^{13}.8=2^{16}>2^{13}.7\)

b, Ta có : \(199^{20}< 200^{20}=2^{60}.5^{40}\)

\(2003^{15}>2000^{15}=2^{60}.2^{45}\)

Thấy : \(45>40\)

\(\Rightarrow2000^{15}>200^{20}\)

\(\Rightarrow2003^{15}>199^{20}\)

c, Ta có : \(\left\{{}\begin{matrix}202^{303}=\left(2.101\right)^{3.101}=\left(8.101^3\right)^{101}\\303^{202}=\left(3.101\right)^{2.101}=\left(9.101^2\right)^{101}\end{matrix}\right.\)

\(8.101^3>9.101^2\)

\(\Rightarrow202^{303}>303^{202}\)

 

a) Ta có: \(2^{16}=2^{13}\cdot8\)

mà \(7< 8\)

nên \(7\cdot2^{13}< 2^{16}\)

b) \(199^{20}=1568239201^5\)

\(2003^{15}=8036054027^5\)

mà \(1568239201< 8036054027\)

nên \(199^{20}< 2003^{15}\)

c) Ta có: \(202^{303}=\left(202^3\right)^{101}\)

\(303^{202}=\left(303^2\right)^{101}\)

mà \(202^3>303^2\)

nên \(202^{303}>303^{202}\)

19 tháng 8 2023

1.

a) 8⁵ = (2³)⁵ = 2¹⁵ = 2.2¹⁴

3.4⁷ = 3.(2²)⁷ = 3.2¹⁴

Do 2 < 3 nên 2.2¹⁴ < 3.2¹⁴

Vậy 8⁵ < 3.4⁷

b) Do 63 < 64 nên

63⁷ < 64⁷  (1)

Ta có:

64⁷ = (2⁶)⁷ = 2⁴²

16¹² = (2⁴)¹² = 2⁴⁸

Do 42 < 48 nên 2⁴² < 2⁴⁸

64⁷ < 16¹²  (2)

Từ (1) và (2) 63⁷ < 16¹²

c) Do 17 > 16 nên 17¹⁴ > 16¹⁴  (1)

Do 32 > 31 nên 32¹¹ > 31¹¹  (2)

Ta có:

16¹⁴ = (2⁴)¹⁴ = 2⁶⁴

32¹¹ = (2⁵)¹¹ = 2⁵⁵

Do 64 > 55 nên 2⁶⁴ > 2⁵⁵

16¹⁴ > 32¹¹  (3)

Từ (1), (2) và (3) 17¹⁴ > 31¹¹

d) Do 39 < 40 nên 3³⁹ < 3⁴⁰   (1)

Do 20 < 21 nên 11²⁰ < 11²¹   (2)

Ta có:

3⁴⁰ = (3²)²⁰ = 9²⁰

Do 9 < 11 nên 9²⁰ < 11²⁰   (3)

Từ (1), (2) và (3) 3³⁹ < 11²¹

e) Ta có:

72⁴⁵ - 72⁴⁴ = 72⁴⁴.(72 - 1) = 72⁴⁴.71

72⁴⁴ - 72⁴³ = 72⁴³.(72 - 1) = 72⁴³.71

Do 44 > 43 nên 72⁴⁴ > 72⁴³

72⁴⁴.71 > 72⁴³.71

Vậy 72⁴⁵ - 72⁴⁴ > 72⁴⁴ - 72⁴³

 

19 tháng 8 2023

a) \(8^5=2^{15};3.4^7=3.2^{14}\) lớn hơn \(2^{15}\)

\(\Rightarrow8^5\) nhỏ hơn \(3.4^7\)

 

a) \(243^5=\left(3^5\right)^5=3^{25}\)

\(3\cdot27^5=3\cdot\left(3^3\right)^5=3\cdot3^{15}=3^{16}\)

mà \(3^{25}>3^{16}\)

nên \(243^5>3\cdot27^5\)

b) \(625^5=\left(5^4\right)^5=5^{20}\)

\(125^7=\left(5^3\right)^7=5^{21}\)

mà \(5^{20}< 5^{21}\)

nên \(625^5< 125^7\)

c) \(202^{303}=\left(202^3\right)^{101}=8242408^{101}\)

\(303^{202}=\left(303^2\right)^{101}=91809^{101}\)

mà \(8242408^{101}>91809^{101}\)

nên \(202^{303}>303^{202}\)

 

20 tháng 8 2023

tham khảo

a) Do \(0,85< 1\) nên hàm số \(y=0,85^x\) nghịch biến \(\mathbb{R}\).

Mà \(0,1>-0,1\) nên \(0,85^{0,1}< 0,85^{-0,1}\).

b) Do \(\pi>1\) nên hàm số \(y=\pi^x\) đồng biến trên \(\mathbb{R}\).

Mà \(-1,4< -0,5\) nên \(\pi^{-1,4}< \pi^{-0,5}\).

c) \(^4\sqrt{3}=3^{\dfrac{1}{4}};\dfrac{1}{^4\sqrt{3}}=\dfrac{1}{3^{\dfrac{1}{4}}}=3^{-\dfrac{1}{4}}\).

Do \(3>1\) nên hàm số \(y=3^x\) đồng biến trên \(\mathbb{R}\).

Mà \(\dfrac{1}{4}>-\dfrac{1}{4}\) nên \(3^{\dfrac{1}{4}}>3^{-\dfrac{1}{4}}\Leftrightarrow^4\sqrt{3}>\dfrac{1}{^4\sqrt{3}}\).