Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho MA=ME. Chứng minh:
a) tam giác MAB = tam giác MEC.
b) AB // EC.
c) tam giác BEC vuông tại E.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta MAB\)và \(\Delta MEC\)có:
MB = MC (M là trung điểm của BC)
\(\widehat{AMB}=\widehat{CME}\)(2 góc đối đỉnh)
MA = ME (gt)
\(\Rightarrow\Delta MAB=\Delta MEC\left(c-g-c\right)\)
b) Ta có: \(\Delta MAB=\Delta MEC\)(theo a)
\(\Rightarrow\widehat{MAB}=\widehat{MEC}\)(2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow EC//AB\)
\(\Rightarrow\widehat{ECA}+\widehat{CAB}=180^o\)(2 góc trong cùng phía)
\(\Rightarrow\widehat{ECA}+90^o=180^o\)
\(\Rightarrow\widehat{ECA}=90^o\Rightarrow EC\perp AC\)
c) Ta có: \(\Delta MAB=\Delta MEC\)(theo a)
\(\Rightarrow AB=EC\)(2 cạnh tương ứng)
Xét \(\Delta CME\)và \(\Delta AMB\)có:
ME = MA (gt)
\(\widehat{CME}=\widehat{AMB}\)(2 góc đối đỉnh)
EC = AB (cmt)
=> \(\Delta CME=\Delta AMB\left(c-g-c\right)\)
\(\Rightarrow CM=AM\)(2 cạnh tương ứng)
Mà BC = 2.CM
=> BC = 2.AM (đpcm)
tu ve hinh nha
XÉT TAM GIÁC MAB VÀ TAM GIÁC MEC CO:
BM=CM( M LÀ TRUNG ĐIỂM CỦA BC)
GÓC BMA = GÓC CME( 2 GÓC ĐỐI ĐỈNH)
AM=EM(GT)
=>TAM GIÁC MAB = TAM GIÁC MEC( C-G-C)
b: Xét ΔMAB và ΔMEC có
MA=ME
\(\widehat{AMB}=\widehat{EMC}\)
MB=MC
Do đó: ΔMAB=ΔMEC
a: Xét ΔMAB và ΔMEC có
MA=ME
\(\widehat{AMB}=\widehat{EMC}\)
MB=MC
Do đó: ΔMAB=ΔMEC
b: ΔMAB=ΔMEC
=>\(\widehat{MAB}=\widehat{MEC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//EC
c: AB//EC
AB\(\perp\)AC
Do đó: EC\(\perp\)AC tại C
Xét ΔMAC và ΔMEB có
MA=ME
\(\widehat{AMC}=\widehat{EMB}\)
MC=MB
Do đó: ΔMAC=ΔMEB
=>\(\widehat{MAC}=\widehat{MEB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//BE
AC//BE
AC\(\perp\)CE
Do đó: BE\(\perp\)CE
=>ΔBEC vuông tại E