K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

*) Tìm GTNN của \(A=a^2+b^2+c^2\)

Ta có :\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a.1+b.1+c.1\right)^2\)(Bunhiacopxki)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{25}{3}\)

*) Tìm GTLN của \(B=ac+bc+ac\)

Ta có  \(a^2+b^2+c^2\ge ab+ac+bc\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3ab+3ac+3bc\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)

\(\Rightarrow ab+bc+ac\le\frac{\left(a+b+c\right)^2}{3}=\frac{25}{3}\)

2 tháng 2 2022

Chuyên gia sao lại đi hỏi ( nghĩ chuyên gia phải cái gì cũng biết mà ??? )

2 tháng 2 2022

luc tạo nick ghi thiếu í bạn

nik đủ là chuyên đi hỏi bài

DD
25 tháng 8 2021

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Leftrightarrow ab+bc+ca=\frac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}\ge\frac{0-1}{2}=-\frac{1}{2}\)

Dấu \(=\)khi \(\hept{\begin{cases}a+b+c=0\\a^2+b^2+c^2=1\end{cases}}\), chẳng hạn \(c=0,a=-b=\sqrt{\frac{1}{2}}\)

25 tháng 8 2021

Ta có : \(1\ge\frac{\left(a+b+c\right)^2}{3}=\frac{1+2\left(ab+bc+ca\right)}{3}\)

\(< =>ab+bc+ca\le1\)

Dấu "=" tự tìm nhaaaaa

14 tháng 8 2017

a^2 hay a.2 thế

14 tháng 8 2017

a^2 bn ạ!!
 

2 tháng 10 2021

\(1,\)

Áp dụng BĐT Bunhiacopski:

\(A^2=\left(\sqrt{3-x}+\sqrt{x+7}\right)^2\le\left(1^2+1^2\right)\left(3-x+x+7\right)=2\cdot10=20\)

Dấu \("="\Leftrightarrow3-x=x+7\Leftrightarrow x=-2\)

 

2 tháng 10 2021

\(A^2=3-x+x+7+2\sqrt{\left(3-x\right)\left(x+7\right)}\\ A^2=10+2\sqrt{\left(3-x\right)\left(x+7\right)}\ge10\)

Dấu \("="\Leftrightarrow\left(3-x\right)\left(x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-7\end{matrix}\right.\)