để biểu thức h=lx+2.56l+2l4y-6l-7 đạt giá trị nhỏ nhất lần lượt là...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta thấy: \(\left\{\begin{matrix}\left|x+1\right|\ge0\\\left|y-2\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|x+1\right|+\left|y-2\right|\ge0\)
\(\Rightarrow A\ge0\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix}\left|x+1\right|=0\\\left|y-2\right|=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x+1=0\\y-2=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
Vậy \(Min_A=0\) khi \(\left\{\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
b)Ta thấy: \(\left\{\begin{matrix}\left|x-4\right|\ge0\\\left|y+6\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|x-4\right|+\left|y+6\right|\ge0\)
\(\Rightarrow B\ge0\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix}\left|x-4\right|=0\\\left|y+6\right|=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x-4=0\\y+6=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x=4\\y=-6\end{matrix}\right.\)
Vậy \(Min_B=0\) khi \(\left\{\begin{matrix}x=4\\y=-6\end{matrix}\right.\)
Có:l3y-6l \(\ge0\) với mọi y
Có:lx+5l \(\ge0\) với mọi x
\(\Rightarrow\)l3y-6l+lx+5l \(\ge0\) với mọi x;y
\(\Rightarrow\)l3y-6l+lx+5l - 365\(\ge0-365\)với mọi x;y
\(\Rightarrow\)l3y-6l+lx+5l - 365\(\ge-365\)với mọi x;y
Dấu bằng xảy ra \(\Leftrightarrow\)l3y-6l=0;lx+5l=0
\(\Rightarrow\)3y-6=0;x+5=0
\(\Rightarrow\)3y=0+6;x=0-5
\(\Rightarrow\)3y=6;x=-5
\(\Rightarrow\)y=6:3;x=-5
\(\Rightarrow\)y=2;x=-5
Vậy giá trị nhỏ nhất của đa thức = -365 \(\Leftrightarrow\)y=2;x=-5
\(M=\left|x-\frac{5}{4}\right|+\left|x+2\right|=\left|\frac{5}{4}-x\right|+\left|x+2\right|\)
Áp dụng bđt \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)với \(xy\ge0\) ta có:
\(M=\left|\frac{5}{4}-x\right|+\left|x+2\right|\ge\left|\frac{5}{4}-x+x+2\right|=\left|\frac{13}{4}\right|=\frac{13}{4}\)với \(\left(\frac{5}{4}-x\right)\left(x+2\right)\ge0\)
Lập bảng xét dấu:
x | -2 5/4 |
5/4-x | + | + 0 - |
x+2 | - 0 + | + |
(5/4-x)(x+2) | - 0 + 0 - |
Nhìn bảng xét dấu dễ thấy \(-2\le x\le\frac{5}{4}=1,25\) thỏa mãn\(\left(\frac{5}{4}-x\right)\left(x+2\right)\ge0\)
Vì x nguyên => \(x\in\left\{-1;0;1\right\}\)
Vậy Mmin=13/4 khi \(x\in\left\{-1;0;1\right\}\)