K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2023

a: Xét ΔABD và ΔACD có

AB=AC

BD=CD

AD chung

Do đó: ΔABD=ΔACD

b: ΔABD=ΔACD

=>\(\widehat{BAD}=\widehat{CAD}\)

=>AD là phân giác của \(\widehat{BAC}\)

c: ΔABD=ΔACD

=>\(\widehat{ADB}=\widehat{ADC}\)

mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)

nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)

=>AD\(\perp\)BC

10 tháng 1 2022

10 tháng 1 2022

TK

 

6 tháng 1 2022

Bài 1:

undefined

Bài 2:

undefined

a: Xét ΔABD và ΔACD có 
AB=AC

AD chung

BD=CD
Do đó: ΔABD=ΔACD

b: Ta có: ΔABC cân tại A

mà AD là đường trung tuyến

nên AD là tia phân giác của góc BAC

c: Ta có: ΔABC cân tại A

mà AD là đường trung tuyến

nên AD là đường cao

=>AD⊥BC

mà d//BC

nên AD⊥d

19 tháng 2 2022

a) Xét ΔΔABD và ΔΔACD có:

        AB = AC (gt)

        AD: cạnh chung

        BD = CD (D là trung điểm của BC)

⇒Δ⇒ΔABD = ΔΔACD (c.c.c)

b)b) Ta có: ΔΔABD = ΔΔACD (theo ý a)

\(\widehat{BAD}\)=\(\widehat{CAD}\)  (2gocs tương ứng )

 AD là tia phân giác của \(\widehat{BAC}\)

c) Ta có: ΔΔABD = ΔΔACD (theo ý a)

⇒ \(\widehat{ADB}\)=\(\widehat{ADC}\)(2 góc tương ứng )

mà \(\widehat{ADB}\)  +  \(\widehat{ADC}\)=18001800( 2 góc kề bù ) 

\(\widehat{ADB}\)=\(\widehat{ADC}\)= 900900

⇒ AD ⊥ BC

Lại có: d // BC (gt)   AD  d

9 tháng 1 2021

Hình bạn tự vẽ nhé.

a. Vì AD là tia phân giác của \(\widehat{BAC}\) (gt)

nên \(\widehat{BAD}=\widehat{CAD}\)

Xét \(\Delta ABD\) và \(\Delta ACD\) có:

AD là cạnh chung

\(\widehat{BAD}=\widehat{CAD}\) (chứng minh trên)

AB = AC

\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)   (đpcm)

b. Gọi giao điểm của MN và AD là S

Ta có: \(\widehat{BAD}=\widehat{CAD}\Rightarrow\widehat{MAS}=\widehat{NAS}\)

Xét \(\Delta AMS\) và \(\Delta ANS\) có:

AS là cạnh chung

\(\widehat{MAS}=\widehat{NAS}\)  (chứng minh trên)

AM = AN (gt)

\(\Rightarrow\Delta AMS=\Delta ANS\left(c.g.c\right)\)

\(\Rightarrow\widehat{ASN}=\widehat{ASM}\) (2 góc tương ứng)

Mà \(\widehat{ASN}+\widehat{ASM}=180^o\) (2 góc kề bù)

\(\Rightarrow\widehat{ASN}=\widehat{ASM}=\dfrac{180^o}{2}=90^o\)

\(\Rightarrow AS\perp MN\)

hay \(AD\perp MN\)   (đpcm)

c. Ta có: AM = AN (gt)

\(\Rightarrow\Delta AMN\) cân tại A (dấu hiệu nhận biết)

\(\Rightarrow\widehat{AMN}=\dfrac{180^o-\widehat{MAN}}{2}\)  (định lí)

hay \(\widehat{AMN}=\dfrac{180^o-\widehat{BAC}}{2}\)  (1)

Lại có: AB = AC (gt)

\(\Rightarrow\Delta ABC\) cân tại A (dấu hiệu nhận biết)

\(\Rightarrow\widehat{ABC}=\dfrac{180^o-\widehat{BAC}}{2}\) (định lí)  (2)

Từ (1), (2)

\(\Rightarrow\widehat{AMN}=\widehat{ABC}\)

Mà 2 góc này ở vị trí đồng vị

\(\Rightarrow\) MN // BC (dấu hiệu nhận biết)  (*)

Xét \(\Delta MOP\) và \(\Delta BDO\) có:

MO = BO (vì O là trung điểm của BM)

\(\widehat{MOP}=\widehat{BOD}\) (2 góc đối đỉnh)

OD = PO (gt)

\(\Rightarrow\Delta MOP=\Delta BOD\left(c.g.c\right)\)

\(\Rightarrow\widehat{MOP}=\widehat{BDO}\) (2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow\) MP // BC (dấu hiệu nhận biết)  (**)

Từ (*), (**)

\(\Rightarrow\) Qua điểm M ở ngoài đường thẳng BC, ta vừa có MN // BC, MP // BC  (trái với tiên đề Ơ-clit)

\(\Rightarrow\) 3 điểm P, M, N thẳng hàng   (đpcm)

9 tháng 1 2021

hey .you vẽ hộ mk cái hình vs ạ

12 tháng 11 2015

       a,  Xét tam giác ADB và tam giác ADC có:                                                                                                                 AB=AC( giả thiết ) ; BD=DC(giả thiết); cạnh AD chung                                                                                       \(\rightarrow\) Tam giác ADB= tam giác ADC                                                                                         b,Tam giác ADB=tam giác ADC(theo câu a) nên góc DAB=góc DAC(2 góc tương ứng)                                          \(\rightarrow\) AD là tia phân giác của góc BAC                                                                                                  c,   Vì tam giác ADB=ADC(câu a) nên góc ADB bằng góc ADC( 2 góc tương ứng)    (1)                                              Ta có góc ADB+góc ADC=180 độ (kề bù)          (2)                                                                                     Từ (1) và (2) \(\rightarrow\) góc ADB=90 độ                                                                                                             \(\Rightarrow\) AD vuông góc voi BC

 

11 tháng 11 2018

Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh: a) Tam giác ADB = ADC; b) AD là tia phân giác của góc BAC; c) AD vuông góc BC - Toán học Lớp 7 - Bài tập Toán học Lớp 7 - Giải bài tập Toán học Lớp 7 | Lazi.vn - Cộng đồng Tri thức & Giáo dục : Bạn vào đó nhé !

11 tháng 11 2018

A B C D

a) AB = AC => tam giác ABC cân tại A

=> B = C

Xét tam giác ADB và tam giác ADC có :

AB = AC ( gt )

B = C ( cmt )

BD = CD ( gt )

=> tam giác ADB = tam giác ADC ( đpcm )

b)+c) Ta có tam giác ABC cân tại A

mà AD là trung tuyến

=> AD đồng thời là phân giác và đường cao

=> đpcm