CMR: (5^8^2004+23) chia het 133 9voi moi n e N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(\left(5^n-1\right)⋮4\)
Suy ra \(5^n⋮5\)(phù hợp)
Vậy \(\left(5^n-1\right)⋮4\)
Cách 2
Ta có:
\(5\equiv1\)(mod 4)
Suy ra \(5^n\equiv1\)(mod 4)
Suy ra \(5^n-1\equiv1-1\equiv0\)(mod 4)
Vậy \(\left(5^n-1\right)⋮4\)
chung to
a)(5n+7).(4n+6)chia het cho 2 voi moi n E N
b)(8n+1).(6n+5)khong chia het cho 2 voi moi n E N
ta co:(11mu n+2)+(12 mu 2n+1)=121.(11mu n)+12.(144 mu n)
=(133-12).(11mu n)+12.(144 mu n)
=133.(11 mu n)+(144mu n -11 mu n).12
ta lai co:133.11 mu n chia het cho 133;(144 mu n)-(11 mu n) chia het cho (144-11)
=>(144 mu n)-(11 mu n)chia het cho 133
=>(11 mu n+2)+(12 mu 2n+1) chia het cho 133
ai nhanh nhat minh k
dùng đồng dư thức
viết đề ko rõ