cho hình chữ nhật ABCD.Kẻ BE vuông góc với AC, I là trung điểm AE
M là trung điểm CD
H là trung điểm BE
a) Chứng minh HC//MI
b) Chứng minh MI vuông góc với IB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I là trung điểm của AE
H là trung điểm của BE
=> IH là trung điểm của tam giác ABE
=> +) IH // AB mà AB // CD (ABCD là hcn) => IH // CD (1)
+) IH = AB/2
mà AB = CD (ABCD là hcn)
=> IH = CD/2
mà CM = CD/2 (M là trung điểm của CD)
=> IH = CM (2)
Từ (1) và (2)
=> IMCH là hbh
=> IM // HC
Câu hỏi của Nguyễn Thiên Anh - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo bài tương tự tại đây nhé.
a) Do M là trung điểm của CD (gt)
⇒ CM = DM = CD/2
Do I là trung điểm AE (gt)
H là trung điểm BE (gt)
⇒ HI là đường trung bình của ∆ABE
HI // AB và HI = AB/2 (2)
Do ABCD là hình chữ nhật (gt)
⇒ AB = CD (3)
Từ (1), (2) và (3) ⇒ HI = CM
Do ABCD là hình chữ nhật (gt)
⇒ AB // CD (4)
Từ (2) và (4) ⇒ HI // CD
⇒ HI // CM
Tứ giác CMIH có:
HI // CM (cmt)
HI = CM (cmt)
⇒ CMIH là hình bình hành
⇒ HC // MI
b) Do HC // MI (cmt)
⇒ ∠MIC = ∠ICH (so le trong)
Do HI // MC (cmt)
⇒ ∠HIC = ∠ICM (so le trong)
Do I và H lần lượt là trung điểm của AE và BE (gt)
⇒ AE/BE = AI/BH
Xét hai tam giác vuông: ∆AEB và ∆BEC có:
∠BAE = ∠CBE (cùng phụ ACB)
⇒ ∆AEB ∆BEC (g-g)
⇒ AE/BE = AB/BC
Mà AE/BE = AI/BH (cmt)
⇒ AI/BH = AB/AC
Xét ∆AIB và ∆BHC có:
AI/BH = AB/BC (cmt)
∠BAI = ∠CBH (cùng phụ ACB)
⇒ ∆AIB ∆BHC (g-g)
⇒ ∠ABI = ∠BCH
Do HI // AB (cmt)
⇒ ∠ABI = ∠BIH (so le trong)
⇒ ∠BIH = ∠BCH
Ta có:
∠BIM = ∠BIH + ∠HIC + ∠MIC
= ∠BCH + ∠ICM + ∠ICH
= ∠BCD = 90⁰
Vậy MI ⊥ IB
Gọi N là trung điểm của BE
=> MN là đường trung ình của tam giác ABE
=>MN//AB, MN=1/2 AB
Mà AB=CD và AB//CD
=>MN//CD, MN = 1/2 CD
=> MNCK là hình bình hành
=> NC//MK (1)
Ta có: MN //AB
AB vuông góc với BC
=> MN vuông góc với BC tại E (E thuộc BC)
Tam giác BCM có BE và ME là đường cao và chúng cắt nhau tại N
=> CN vuông góc với BM (2)
Từ (1) và (2) suy ra:
BM vuông góc với MK (đpcm)