K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

Hình chữ nhật

31 tháng 10 2021

a: Ta có: ΔBEC vuông tại E

mà EM là đường trung tuyến

nên EM=BC/2(1)

Ta có: ΔBDC vuông tại D

mà DM là đường trung tuyến

nên DM=BC/2(2)

từ (1) và (2) suy ra EM=DM

hay ΔDME cân tại M

10 tháng 8 2022

loading...

8 tháng 11 2019

a)XÉT \(\Delta BEC\left(\widehat{BEC}=90^0\right)\)

MB=MC(gt) \(\Rightarrow\)EM LÀ ĐƯỜNG TRUNG TUYẾN CỦA\(\Delta BEC\)

\(\Rightarrow EM=\frac{BC}{2}\)(TÍNH CHẤT ĐƯỜNG TRUNG TUYẾN TRONG TAM GIÁC VUÔNG)\(\left(1\right)\)

XÉT \(\Delta CDB\left(\widehat{CDB}=90^0\right)\)

MB=MC\(\Rightarrow\)DM LÀ ĐƯỜNG TRUNG TUYẾN CỦA \(\Delta CDB\)

\(\Rightarrow DM=\frac{BC}{2}\)(TÍNH CHẤT ĐƯỜNG TRUNG TUYẾN TRONG TAM GIÁC VUÔNG)\(\left(2\right)\)

TỪ (1) VÀ (2) SUY RA \(EM=DM\left(=\frac{BC}{2}\right)\)

\(\Rightarrow\Delta EMD\)CÂN TẠI M

MẶT KHÁC : XÉT \(\Delta EMD\)

I LÀ TRUNG ĐIỂM CỦA DE (gt)

HAY IM LÀ ĐƯỜNG TRUNG TUYẾN CỦA \(\Delta EMD\)

\(\Delta EMD\)CÂN TẠI M NÊN IM VỪA LÀ ĐƯỜNG TRUNG TUYẾN VỪA LÀ ĐƯỜNG CAO CỦA \(\Delta EMD\)

\(\Rightarrow MI\perp DE\)

b) XÉT TỨ GIÁC BEDC CÓ

\(MI\perp ED\)

\(CD\perp ED\)

\(\Rightarrow BHDC\)LÀ HÌNH THANG

XÉT HÌNH THANG BHDC CÓ

\(MI\perp HD\)

\(DC\perp HD\)

\(\Rightarrow\)MI //CD

BM=MC(gt)

\(\Rightarrow\)MI LÀ ĐƯỜNG TRUNG BÌNH CỦA HÌNH THANG BEDC

\(\Rightarrow IH=IK\)

TA CÓ \(EH=IH-IE\)

\(DK=IK-ID\)

\(IE=ID\left(gt\right)\);\(IH=IK\left(cmt\right)\)

\(\Rightarrow EH=DK\)

có thể cm \(IH=IK\)theo cách khác là

ta có \(MI\perp HD\)

\(BH\perp HD\)

\(CK\perp HD\)

\(\Rightarrow\)MI //BH // CK

mặt khác ta có  BM=MC

\(\Rightarrow IH=IK\)(tính chất các đường thẳng song song cách đều)

29 tháng 4 2017

a/ Ta có: góc HBD đối đỉnh góc ABC; góc KCE đối đỉnh góc ACB mà ABC=ACB( Tg ABC cân tại A) => Góc HBD = góc KCE.

Xét tg HBD ( vuông tại H) và tg KCE ( vuông tại K) có:

                 góc HBD = góc KCE ( cmt)

                 DB=CE (gt)

=> Tg HBD=Tg KCE( ch-gn)

=> HB=CK( hai cạnh tương ứng)

b/ Xét tg AHB và tg AKC có:

                 HB=CK ( cmt)

                góc ABH= góc ACK ( cùng kề bù với hai góc bằng nhau)

                 AB=AC( tg ABC cân tại A)

=> tg AHB= tg AKC ( c.g.c)

=> góc AHB = góc AKD( hai góc tương ứng)

c/ Ta có : AB+BD=AD; AC+CE=AE mà AB=AC và BD=CE => AD=AE 

Trong tg ADE có AD=AE => Tg ADE cân tại A

Ta có: góc ABC= góc ACB =\(\frac{180^0-gócBAC}{2}\)và góc ADE= góc AED=\(\frac{180^0-gócBAC}{2}\)

=> góc ABC=góc ACB= góc ADE= góc AED .

Mà ABC và ADE cùng nằm ở vị trí đồng vị => HK//DE

d/ ta có: góc HAB+ góc BAC= góc HAC

             góc KAC+ góc BAC= góc KAB

mà góc HAB=góc CAK ( tg AHB= tg AKC) => góc HAC= góc KAB.

Xét tg AHE và tg AKD có:

             AH = AK( tg AHB= tg AKC)

             góc HAC= góc KAB ( CMT)

             AE=AD

=>  Tg AHE =tg AKD ( c.g.c)

e/ Mk` chưa giải được.

29 tháng 4 2017

xin lỗi em mới học lớp 5 thôi

A B C H K D E I

a, \(\Delta ABC\)cân tại A = > \(\widehat{ABC}=\widehat{ACB}\)

Xét \(\Delta HBD\perp H\)và \(\Delta KCE\perp K\)có :

\(BD=CE\left(gt\right)\)

Mặt khác : góc HBD đối đỉnh với góc ABC = > góc HBD = góc ABC

                  góc KCE đối đỉnh với góc ACB = > góc KCE = góc ACB

Mà góc ABC = ACB = > góc HBD = góc KCE 

\(=>\Delta HBD=\Delta KCE\left(ch-gn\right)\)

= > HB = CK ( 2 cạnh tương ứng )

b, Xét \(\Delta AHB\)và \(\Delta AKC\)có 

HB = CK ( cmt )

AB = AC ( gt )

\(\widehat{HBD}+\widehat{HBA}=180^0\)

= > \(\widehat{HBA}=180^0-\widehat{HBD}\)( 1 )

\(\widehat{KCE}+\widehat{KCA}=180^0\)

= > \(\widehat{KCA}=180^0-\widehat{KCE}\)( 2 )

Từ ( 1 ) và ( 2 ) = > \(\widehat{HBA}=\widehat{KCA}\)

\(=>\Delta AHB=\Delta AKC\left(c.g.c\right)\)

c, \(\Delta ABC\)cân tại A = > \(\widehat{ABC}=\frac{180^0-\widehat{BAC}}{2}\)( 1 )

\(B\in AD\)

= > AB + BD = AD ( * )

\(C\in AE\)

= > AC + CE = AE ( ** )

Từ ( * ) và ( ** ) = > AD = AE  hay \(\Delta ADE\)cân tại A 

= > \(\widehat{ADE}=\frac{180^0-\widehat{EAD}}{2}\)( 2 )

Từ ( 1 ) và ( 2 ) = > \(\widehat{ABC}=\widehat{ADE}\)hay HK // DE

d, Xét \(\Delta AHE\)và \(\Delta AKD\)có:

\(\widehat{A}\)chung

AH = AK ( cmt )

AE = AD ( cmt )

= > \(\Delta AHE=\Delta AKD\left(c.g.c\right)\)

câu e, bạn làm nốt nhé