Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ID cắt EF tại G. cần chứng minh A,G,M thẳng hàng
Ta có : AG cắt BC tại M'. đường thẳng qua G song song với BC cắt AB,AC tại S,T
Dễ thấy \(ID\perp BC\)\(\Rightarrow IG\perp ST\)
Tứ giác FSGI nội tiếp, tứ giác IGET nội tiếp \(\Rightarrow\hept{\begin{cases}\widehat{IFG}=\widehat{ISG}\\\widehat{ITG}=\widehat{IEG}\end{cases}\Rightarrow\widehat{ISG}=\widehat{ITG}}\)( Vì \(\widehat{IFG}=\widehat{IEG}\))
\(\Rightarrow\Delta IST\)cân tại I có \(IG\perp ST\)nên GS = GT
Xét hình thang STCB có BS,M'G,CT cắt nhau tại A và G là trung điểm của ST nên M' là trung điểm của BC
\(\Rightarrow M'\equiv M\)hay A,G,M thẳng hàng
AM cắt KI tại H
Dễ thấy \(AI\perp EF\)nên \(KG\perp AI\)
\(\Delta AIK\)có \(IG\perp AK;KG\perp AI\)nên G là trực tâm \(\Rightarrow AG\perp KI\)tại H
AI cắt EF tại N
Tứ giác ANHK nội tiếp \(\Rightarrow IH.IK=IN.IA=IF^2=ID^2\Rightarrow\frac{IH}{ID}=\frac{ID}{IK}\)
\(\Rightarrow\Delta IDH\approx\Delta IKD\left(c.g.c\right)\)\(\Rightarrow\widehat{IDH}=\widehat{IKD}\)( 1 )
Tứ giác IHMD nội tiếp \(\Rightarrow\widehat{IDH}=\widehat{IMH}\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(\widehat{IKD}=\widehat{IMH}\)
Mà \(\widehat{IMH}+\widehat{MIH}=90^o\)suy ra \(\widehat{IKD}+\widehat{MIH}=90^o\)
\(\Rightarrow MI\perp DK\)
Từng bài 1 thôi bạn!
vẽ trên đt thông cảm!
Do đường tròn ngoại tiếp tam giác ABC có tâm là O
Ta có bổ đề: \(OM=AN=NH=\frac{1}{2}AH\)(tự chứng minh)
Vì \(\widehat{BAH}=\widehat{OAC}\)(cùng phụ với \(\widehat{ABC}\))
Mà AK là phân giác của \(\widehat{BAC}\)
=> AK là phân giác
\(\widehat{HAO}\Rightarrow\widehat{NAK}=\widehat{KAO}\)
Theo bổ đề trên ta có tứ giác ANMO là hình bình hành
=> HK//AO
=> \(\widehat{AKN}=\widehat{KAO}=\widehat{NAK}\left(cmt\right)\)
Hay tam giác NAK cân tại N mà N là trung điểm AH
=> AN=NH=NK
=> \(\Delta AHK\)vuông tại K
a)XÉT \(\Delta BEC\left(\widehat{BEC}=90^0\right)\)CÓ
MB=MC(gt) \(\Rightarrow\)EM LÀ ĐƯỜNG TRUNG TUYẾN CỦA\(\Delta BEC\)
\(\Rightarrow EM=\frac{BC}{2}\)(TÍNH CHẤT ĐƯỜNG TRUNG TUYẾN TRONG TAM GIÁC VUÔNG)\(\left(1\right)\)
XÉT \(\Delta CDB\left(\widehat{CDB}=90^0\right)\)CÓ
MB=MC\(\Rightarrow\)DM LÀ ĐƯỜNG TRUNG TUYẾN CỦA \(\Delta CDB\)
\(\Rightarrow DM=\frac{BC}{2}\)(TÍNH CHẤT ĐƯỜNG TRUNG TUYẾN TRONG TAM GIÁC VUÔNG)\(\left(2\right)\)
TỪ (1) VÀ (2) SUY RA \(EM=DM\left(=\frac{BC}{2}\right)\)
\(\Rightarrow\Delta EMD\)CÂN TẠI M
MẶT KHÁC : XÉT \(\Delta EMD\)CÓ
I LÀ TRUNG ĐIỂM CỦA DE (gt)
HAY IM LÀ ĐƯỜNG TRUNG TUYẾN CỦA \(\Delta EMD\)
VÌ \(\Delta EMD\)CÂN TẠI M NÊN IM VỪA LÀ ĐƯỜNG TRUNG TUYẾN VỪA LÀ ĐƯỜNG CAO CỦA \(\Delta EMD\)
\(\Rightarrow MI\perp DE\)
b) XÉT TỨ GIÁC BEDC CÓ
\(MI\perp ED\)
\(CD\perp ED\)
\(\Rightarrow BHDC\)LÀ HÌNH THANG
XÉT HÌNH THANG BHDC CÓ
\(MI\perp HD\)
\(DC\perp HD\)
\(\Rightarrow\)MI //CD
BM=MC(gt)
\(\Rightarrow\)MI LÀ ĐƯỜNG TRUNG BÌNH CỦA HÌNH THANG BEDC
\(\Rightarrow IH=IK\)
TA CÓ \(EH=IH-IE\)
\(DK=IK-ID\)
MÀ \(IE=ID\left(gt\right)\);\(IH=IK\left(cmt\right)\)
\(\Rightarrow EH=DK\)
có thể cm \(IH=IK\)theo cách khác là
ta có \(MI\perp HD\)
\(BH\perp HD\)
\(CK\perp HD\)
\(\Rightarrow\)MI //BH // CK
mặt khác ta có BM=MC
\(\Rightarrow IH=IK\)(tính chất các đường thẳng song song cách đều)