Tìm số tự nhiên có 2 chữ số biết tổng số đó và các chữ số của nó bằng 100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Gọi số cần tìm là ab thì theo giả thiết, ta có: ab+a+b=65 <=> 11a+2b=65 => a\(\le\)5 và a lẻ (do 2b chẵn, 65 lẻ) => a\(\in\)(1;3;5) rồi giải ra tìm b.
Bài 2:
(chưa biết)
Gọi số phải tìm là \(\overline{ab}\)\((0< a,b< 10;a,b\in N)\)
Theo bài ra ta có :
\(\overline{ab}+a+b=65\)
\(\Rightarrow10a+b+a+b=65\)
\(\Rightarrow11a+2b=65\)
Vì 2b là số chẵn
\(\Rightarrow\)11a là số lẻ
Mà 11a<65\(\Rightarrow a\in\left(1;3;5\right)\)
Thử lại:a=5\(\Rightarrow b=5\)
Vậy số phải tìm là 55
Gọi số tự nhiên cần tìm là \(\overline{ab}\left(0< a< 10;0\le b\le9;a,b\in N\right)\)
Vì số đó bằng tổng bình phương các chữ số của nó cộng thêm 4
=> \(\overline{ab}=a^2+b^2+4\)
<=> a2 - 10a + b2 - b + 4 = 0 (1)
Lại có số đó lớn hơn 2 lần tích các chữ số của nó 5 đơn vị
=> \(\overline{ab}-2ab=5\)
<=> 10a + b - 2ab - 5 = 0 (2)
Từ (1)(2) => HPT : \(\left\{{}\begin{matrix}a^2-10a+b^2-b+4=0\\10a+b-2ab-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2-10a+b^2-b+4=0\\\left(1-2a\right)\left(b-5\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2-10a+b^2-b+4=0\\\left[{}\begin{matrix}a=\dfrac{1}{2}\left(\text{loại}\right)\\b=5\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2-10a+5^2-5+4=0\\b=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-4\right)\left(a-6\right)=0\\b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a=4\\a=6\end{matrix}\right.\\b=5\end{matrix}\right.\)
Vậy 2 số cần tìm là 45 và 65
Gọi chữ số hàng chục là x (x là các số tự nhiên từ 1 tới 9)
Gọi chữ số hàng đơn vị là y (y là các số tự nhiên từ 0 tới 9)
\(\Rightarrow\) Giá trị của số đó là: \(10x+y\)
Do số đó bằng tổng các chữ số cộng với 9 nên:
\(10x+y=x+y+9\Rightarrow9x=9\Rightarrow x=1\)
Số đó bằng 2 lần hiệu 2 chữ số của nó và cộng thêm 20:
Trường hợp 1: \(10x+y=2\left(x-y\right)+20\)
\(\Rightarrow10.1+y=2-2y+20\)
\(\Rightarrow3y=12\Rightarrow y=4\)
Trường hợp 2: \(10x+y=2\left(y-x\right)+20\)
\(\Rightarrow10.1+y=2y-2+20\)
\(\Rightarrow y=-8< 0\) (loại)
Vậy số đó là 14
gọi số đó là ab
ta có a+b=5=> =5-b
a^2+b^2=13
<=>(5-b)^2+b^2=13
<=>25-10b+b^2+b^2=13
<=>2b^2-10b+12=0
<=>[b=2=>a=3
[b=3=> a=2
vậy số có 2 chữ số cần tìm là 23 hoặc 32
Tham khảo:
gọi số đó là ab
ta có a+b=5=> =5-b
a2+b2=13
<=>(5-b)2+b2=13
<=>25-10b+b2+b2=13
<=>2b2-10b+12=0
<=>b=2=>a=3
<=>b=3=>a=2
Vậy số đó là 32 và 23
Theo mình thì phân tích ra thành thế này
gọi số cần tìm là \(ab\) có:
\(ab=x^3;a+b=x^2\)(\(x\) là số tự nhiên mà khi lập phương lên thì bằng \(ab\), khi bình phương lên thì bằng \(a+b\))
Từ đó ta có: \(10a+b=x^3\)
\(a+b=x^2\)
Rồi suy ra được ab thì phải, mình không biết có đúng không nữa, nếu mà các bước mình làm đúng thì bạn nghiên cứu thêm nhé
Bài 69:
Số bé là:
2008/2=1004
Số lớn là:
2008-1004=1004
Bài 70:
Số cần tìm là 732111...
Bài 71:
Số cần tìm là 6789.
Bài 72:
Số cần tìm là 60000...
Tck mik nhé
Ta có:
ab+a+b=100
=>10a+b+a+b=100
=>11a+2b=100
Vì 2 b luôn chẵn và 100 cx chẵn
=>11a chẵn
Mà 11 lẻ
=>a chẵn
Mà 2b lớn nhất =18
=>a=8
=>11*8+2b=100
=>2b=12
=>b=6
Vậy ab=86
thanks