Tính tổng A= 5/3.7 + 5/7.11 + 5/11.15+...+5/2019.2023
Các bạn cho mình hỏi mình viết thành 5/4 x (4/3.7 + 4/7.11 + 4/11.15+...+ 4/2019.2023 ) được ko ạ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 5/(3.7) + 5/(7.11) + 5/(11.15) + ... + 5/(2019.2023)
= 5/4 . (1/3 - 1/7 + 1/7 - 1/11 + 1/11 - 1/15 + ... + 1/2019 - 1/2023)
= 5/4 . (1/3 - 1/2023)
= 5/4 . 2020/6069
= 2525/6069
Lời giải:
$A=5(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{2019.2023})$
$4A=5(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{2019.2023})$
$=5(\frac{7-3}{3.7}+\frac{11-7}{7.11}+\frac{15-11}{11.15}+...+\frac{2023-2019}{2019.2023})$
$=5(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+....+\frac{1}{2019}-\frac{1}{2023})$
$=5(\frac{1}{3}-\frac{1}{2023})=\frac{2020}{6069}$
$\Rightarrow A=\frac{2020}{6069}:4=\frac{505}{6069}$
\(\dfrac{4}{3.7}+\dfrac{4}{7.11}+\dfrac{4}{11.15}+...+\dfrac{4}{59.63}\)
\(=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{59}-\dfrac{1}{63}\)
\(=\dfrac{1}{3}-\dfrac{1}{63}\)
\(=\dfrac{20}{63}\)
\(K=\dfrac{5}{4}\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{85}-\dfrac{1}{89}\right)\)
\(=\dfrac{5}{4}\cdot\left(\dfrac{1}{3}-\dfrac{1}{89}\right)=\dfrac{5}{4}\cdot\dfrac{86}{267}=\dfrac{215}{534}\)
a=4/3.7 +4/7.11+4/11.15 +.....+4/107/111
=1/3-1/7+1/7-1/11+1/11-1/15+......+1/107-1/111
=1/3-1/111
=12/37
4x(\(\frac{1}{3.7}+...+\frac{1}{107.111}\) )
4(\(\frac{1}{3}-\frac{1}{7}+...+\frac{1}{107}-\frac{1}{111}\))
4(\(\frac{1}{3}-\frac{1}{111}\))
4.\(\frac{12}{37}\)
48/37
Ta thấy \(\frac{1}{3}-\frac{1}{7}=\frac{7-3}{3.7}=\frac{4}{3.7}\)
\(\frac{1}{7}-\frac{1}{11}=\frac{11-7}{7.11}=\frac{4}{7.11}\)
..........................
\(\frac{1}{1023}-\frac{1}{1027}=\frac{1027-1023}{1023.1027}=\frac{4}{1023.1027}\)
=> \(\frac{4}{3.7}+\frac{4}{7.11}+....+\frac{4}{1023.1027}=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+....+\frac{1}{1023}-\frac{1}{1027}\)
=> =\(\frac{1}{3}-\frac{1}{1027}=\frac{1024}{3.1027}\)
Ta có: \(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{1023.1027}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{1023}-\frac{1}{1027}\)
\(=\frac{1}{3}-\frac{1}{1027}=\frac{1024}{3081}\)
Viết vậy đúng đó em
A = 5/(3.7) + 5/(7.11) + 5/(11.15) + ... + 5/(2019.2023)
= 5/4 . [4/(3.7) + 4/(7.11) + 4/(11.15) + ... + 4/(2019.2023)]
= 5/4 . (1/3 - 1/7 + 1/7 - 1/11 + 1/11 - 1/15 + ... + 1/2019 - 1/2023)
= 5/4 . (1/3 - 1/2023)
= 5/4 . 2020/6069
= 2525/6069