Tìm số tự nhiên có hai chữ số,biết rằng nếu nhân nó với 45 thì ta được một số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số đó là a
=> a.45 = b2
=>9.(5a) = b2
=> 5a là số chính phương=> a =5.k2
Vì a có hai chữ số =>9 <5k2 <100 => 1,8< k2 < 20 => k2 =4;9;16
=> a =20;45;80
3.a)n và 2n có tổng các chữ số bằng nhau => hiệu của chúng chia hết cho 9
mà 2n-n=n=>n chia hết cho 9 => đpcm
Gọi số phải tìm là n, ta có: 135n = \(a^2\) (a thuộc N) hay \(3^2.5.n=a^2\)
Số chính phương chỉ chứa các số nguyên tố mũ chẵn nên n = 3.5.\(k^2\) (k thuộc N)
Với k = 1 thì n = 15, k = 2 thì n = 60 với k \(\ge\)3 thì n \(\ge\)135(có nhiều hơn hai chữ số, loại)
Vậy số phải tìm là 15 hoặc 60
Gioi sô phai tìm là n,ta có 135n=a2 (a thuoc N) hay 33.5.k2 (k thuoc N) voi k=1 thì n=15,voi k=2 thi n=60,vây sô phai tìm là 15 hoăc 60
Lời giải:
Gọi số cần tìm là $\overline{ab}$. Theo bài ra ta có:
$\overline{ab}\times 45=\overline{ab}\times 5\times 3^2$
Để $\overline{ab}\times 45$ là scp thì $\overline{ab}$ có dạng $5.m^2$ với $m$ là số tự nhiên
Vì $\overline{ab}$ có 2 chữ số nên:
$10\leq 5m^2\leq 100$
$\Rightarrow 2\leq m^2\leq 20$
$\Rightarrow m^2=4; 9$
$\Rightarrow \overline{ab}=5m^2=5.4=20$ hoặc $\overline{ab}=5.9=45$