K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\widehat{ADE}+\widehat{EDC}=90^0\)

\(\widehat{KDC}+\widehat{EDC}=90^0\)

Do đó: \(\widehat{ADE}=\widehat{KDC}\)

Xét ΔADE vuông tại A và ΔCDK vuông tại C có

DA=DC

\(\widehat{ADE}=\widehat{KDC}\)

Do đó: ΔADE=ΔCDK

=>DE=DK

Xét ΔDEK có

\(\widehat{EDK}=90^0\)

DE=DK

Do đó: ΔDEK vuông cân tại D

b: Xét ΔDFK vuông tại D có DC là đường cao

nên \(\dfrac{1}{DK^2}+\dfrac{1}{DF^2}=\dfrac{1}{DC^2}\)

=>\(\dfrac{1}{DE^2}+\dfrac{1}{DF^2}=\dfrac{1}{DC^2}\) không đổi

NV
7 tháng 8 2021

Xét hai tam giác vuông \(DAE\) và DCG:

\(\widehat{A}=\widehat{C}=90^0\)

\(AD=CD\) (cạnh hình vuông)

\(\widehat{ADE}=\widehat{CDG}\) (cùng phụ \(\widehat{CDE}\))

\(\Rightarrow\Delta DAE=\Delta DCG\left(g.c.g\right)\)

\(\Rightarrow DE=DG\)

\(\Rightarrow\Delta DEG\) cân tại D

NV
7 tháng 8 2021

undefined

a) \(_{\Delta}\) ADI và  \(\Delta\)  DCL có:

góc DAI = góc DCL = \(90^0\) (gt)

AD=CD( gt)

góc ADI = góc CDL ( cùng phụ góc IDC)

=>  \(\Delta\)  ADI = \(\Delta\) CDL ( ch-gn) => DI =DL ( cạnh tương ứng) 

=> Tam giác DIL cân 

b)  Tam giác DLK vuông tại D=>  \(\dfrac{1}{C\text{D}^2}=\dfrac{1}{DK^2}+\dfrac{1}{DL^2}\)

=> \(\dfrac{1}{C\text{D}^2}=\dfrac{1}{DK^2}+\dfrac{1}{DI^2}\)  ( DI = DL)

 

4 tháng 8 2019

Xét hai tam giác vuông ADI và CDL có:

AD = CD (cạnh hình vuông)

Để học tốt Toán 9 | Giải bài tập Toán 9

Nên ΔADI = ΔCDL (cạnh góc cuông và góc nhọn)

Suy ra DI = DL hay ΔDIL cân. (đpcm)

28 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Xét hai tam giác vuông ADI và CDL có:

AD = CD (cạnh hình vuông)

Để học tốt Toán 9 | Giải bài tập Toán 9

Nên ΔADI = ΔCDL (cạnh góc cuông và góc nhọn)

Suy ra DI = DL hay ΔDIL cân. (đpcm)

b) Trong tam giác DKL vuông tại D với đường cao DC. Theo định lí 4, ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

không đổi khi I thay đổi trên cạnh AB. (đpcm)

26 tháng 11 2017

Trong tam giác DKL vuông tại D với đường cao DC. Theo định lí 4, ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

không đổi khi I thay đổi trên cạnh AB. (đpcm)