Tìm một số biết lấy số đó chia 10 dư 3, chia 12 dư 5, chia 15 dư 8, chia hết cho 19
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BSCNN(10,5,15)=30
30.n-7 thoa man 3 dieu kien dau
tim n de
30n-7 chia het cho 19
30n-7=19k
tu lam tiep
gọi số đó là a, ta có:
a chia 10 dư 3; chia 12 dư 5; chia 15 dư 8 và số đó chia hết cho 19. suy ra a=7 chia hết cho 10,12,15=> a+7 thuộc BCNN(10,12,15)
ta có BCNN(10,12,15)=60
suy ra a+7 thuộc B(60)={0,60,120,180,240,300,360,420,480,540,600,660,720,780,.....}
bạn lấy mấy số đó trừ 7 rồi xem số nào chia hết cho 19 là dc
Gọi số cần tìm là a ( a∈Na∈N ; a≤999a≤999 )
Theo bài ra , ta có :
a : 8 dư 7 => ( a+1 ) ⋮⋮ 8
a : 31 dư 28 => ( a+ 3 ) ⋮⋮ 28
Ta thấy ( a+1 ) + 64 ⋮⋮ 8 = ( a+3 ) +62 ⋮⋮ 31
=> a+65 ⋮⋮ 8 và 31
Mà ( 8;31 ) =1
=> a+65 ⋮⋮ 248
Vì a ≤≤ 999 => a+65 ≤≤ 1064
Để a là số tự nhiên lớn nhất thỏa mãn điều kiện thì cũng phải là số tự nhiên lớn nhất thỏa mãn a+65248=4a+65248=4
=> a=927
Vậy số cần tìm là 927
Lời giải:
Gọi số cần tìm là $a$. Ta có:
$a-3\vdots 10; a-5\vdots 12; a-8\vdots 15$
$\Rightarrow a-3+10\vdots 10; a-5+12\vdots 12; a-8+15\vdots 15$
$\Rightarrow a+7\vdots 10,12,15$
$\Rightarrow a+7=BC(10,12,15)$
$\Rightarrow a+7\vdots BCNN(10,12,15)$
$\Rightarrow a+7\vdots 60$
$\Rightarrow a=60k-7$ với $k$ tự nhiên.
Vì $a=60k-7\vdots 19$
$\Rightarrow 60k-7-57k\vdots 19$
$\Rightarrow 3k-7\vdots 19$
$\Rightarrow 3k+12\vdots 19\Rightarrow 3(k+4)\vdots 19$
$\Rightarrow k+4\vdots 19$ nên $k=19m-4$ với $m$ tự nhiên.
Khi đó: $a=60k-7=60(19m-4)-7=1140m - 247$ với $m$ là stn.