K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

a. Gọi \(A\left(x_0;y_o\right)\) là điểm cố định mà \(\Delta\)đi qua

Ta có phương trinh hoành độ giao điểm \(\left(m-3\right)x_o-\left(m-2\right)y_0+m-1=0\)

\(\Leftrightarrow mx_0-my_0+m-\left(3x_0-2y_0+1\right)=0\Leftrightarrow m\left(x_0-y_0+1\right)-\left(3x_0-2y_0+1\right)=0\)

Vì đẳng thức đúng với mọi m nên \(\hept{\begin{cases}x_0-y_0+1=0\\3x_0-2y_0-1=0\end{cases}\Rightarrow\hept{\begin{cases}x_0=3\\y_0=4\end{cases}\Rightarrow}A\left(3;4\right)}\)

Vậy \(\Delta\)luôn đi qua điểm \(A\left(3;4\right)\)cố định 

b. Ta có \(\left(m-2\right)y=\left(m-3\right)x+m-1\)

Để \(\Delta\)song song với Ox thì \(\hept{\begin{cases}m-2\ne0\\m-3=0\end{cases}\Rightarrow m=3}\)

Để \(\Delta\)song song với Oy thì \(\hept{\begin{cases}m-2=0\\m-3\ne0\end{cases}\Rightarrow m=2}\)

Để \(\Delta\)song song với đt \(y=x\)\(\Rightarrow\hept{\begin{cases}m-2=1\\m-3=1\end{cases}\Rightarrow\hept{\begin{cases}m=3\\m=4\end{cases}\left(l\right)}}\)

Vậy không tồn tại m để \(\Delta\)song song với đt \(y=x\)

(P): \(y=\left(1+m\right)x^2-2\left(m-1\right)x+m-3\)

\(=x^2+mx^2-2mx+2x+m-3\)

\(=m\left(x^2-2x+1\right)+x^2+2x-3\)

\(=m\left(x-1\right)^2+x^2+2x-3\)

Tọa độ điểm cố định mà (Pm) luôn đi qua là:

\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\y=x^2+2x-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-1=0\\y=x^2+2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1+2-3=0\end{matrix}\right.\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

\({\overrightarrow {MM} _0} = \left( {{x_0} - x;{y_0} - y} \right)\) mà \(\Delta \) nhận \({\overrightarrow {MM} _0}\)làm vectơ chỉ phương nên ta có:

\(\left\{ \begin{array}{l}{x_0} - x = {u_1}\\{y_0} - y = {u_2}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = {x_0} - {u_1}\\y = {y_0} - {u_2}\end{array} \right.\)

Vậy \(M\left( {{x_0} - {u_1};{y_0} - {u_2}} \right)\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Gọi \(M\left( {x;y} \right)\)

Ta có: \(\overrightarrow {AM}  = \left( {x - {x_o};y - {y_o}} \right),\overrightarrow n  = \left( {a;b} \right)\)

\( M \in \Delta \Leftrightarrow \overrightarrow {AM}  \bot \overrightarrow n \)

Hay \(\overrightarrow {AM} .\overrightarrow n  = 0 \Leftrightarrow a\left( {x - {x_o}} \right) + b\left( {y - {y_o}} \right) = 0\) (ĐPCM).

12 tháng 3 2021

a, Phương trình đường thẳng song song với \(\Delta\) và đi qua \(M\left(1;\dfrac{1}{2}\right)\) là \(y=\dfrac{1}{2}\)

b, Phương trình đường thẳng vuông góc với \(\Delta\) và đi qua \(M\left(3;4\right)\) là \(x=3\)

c, Phương trình đường thẳng vuông góc với \(\Delta\) và đi qua \(M\left(-1;2\right)\) là \(y=2\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

\(\Delta \) nhận vectơ \(\overrightarrow n  = \left( {a;b} \right)\) làm vectơ pháp tuyến, suy ra vectơ chỉ phương của \(\Delta \) là \(\overrightarrow u  = (b; - a)\)

M và \({M_0}\) thuộc đường thẳng \(\Delta \) nên \(\Delta \) nhận \({\overrightarrow {MM} _0}\)làm vectơ chỉ phương

\({\overrightarrow {MM} _0} = \left( {{x_0} - x;{y_0} - y} \right)\), suy ra \(\left\{ \begin{array}{l}{x_0} - x = b\\{y_0} - y =  - a\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = {x_0} - b\\y = {y_0} + a\end{array} \right.\)

Suy ra \(M\left( {{x_0} - {u_1};{y_0} - {u_2}} \right)\)

Thay tọa độ điểm M vào phương trình \(ax + by + c = 0\) ta có:

\(a\left( {{x_0} - b} \right) + b\left( {{y_0} + a} \right) + c = \left( { - ab + ba} \right) + \left( {a{x_0} + b{y_0} + c} \right) = 0\)      (đúng vì \( - a{x_0} - b{y_0} = c\))

Vậy \(M(x;y)\) thỏa mãn phương trình đã cho

NV
15 tháng 12 2020

a.

Giả sử điểm cố định mà (d) đi qua có tọa độ \(M\left(x_0;y_0\right)\)

Với mọi m, ta có:

\(y_0=\left(m+2\right)x_0+m\)

\(\Leftrightarrow m\left(x_0+1\right)+2x_0-y_0=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\2x_0-y_0=0\end{matrix}\right.\) \(\Rightarrow M\left(-1;-2\right)\)

b. Để (d) cắt 2 trục tạo thành tam giác thì \(m\ne\left\{0;-2\right\}\)

Khi đó ta có: \(\left\{{}\begin{matrix}A\left(-\dfrac{m}{m+2};0\right)\\B\left(0;m\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}OA=\left|\dfrac{m}{m+2}\right|\\OB=\left|m\right|\end{matrix}\right.\)

\(S_{OAB}=\dfrac{1}{2}OA.OB=\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{m^2}{\left|m+2\right|}=1\)

\(\Leftrightarrow\left[{}\begin{matrix}m^2=m+2\\m^2=-m-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=2\end{matrix}\right.\)

31 tháng 10 2022

b: Để hai đường song song thì m^2-1=1 và -m^2+3=5

=>m^2=2 và -m^2=2

=>\(m=\pm\sqrt{2}\)

c: Vì (d2) vuông góc với (d3)

và (d1)//(d2)

nên (d1) vuông góc với (d3)