K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 11 2023

Lời giải:
Xét csn $(u_n)$ với công bội $q$

Ta có:

$S_n=u_1+u_2+...+u_n=u_1+u_1q+u_1q^2+....+u_1q^{n-1}$

$=u_1(1+q+q^2+....+q^{n-1})$

$qS_n=u_1(q+q^2+q^3+....+q^n)$

$\Rightarrow qS_n-S_n=u_1(q^n-1)$

$\Rightarrow S_n(q-1)=u_1(q^n-1)$

$\Rightarrow S_n=\frac{u_1(q^n-1)}{q-1}=\frac{u_1(1-q^n)}{1-q}$

Ta có đpcm.

AH
Akai Haruma
Giáo viên
31 tháng 10 2023

Lời giải:

Tổng của $n$ số hạng trong dãy là cấp số nhân $(u_n)$ với công bội $q$ là:

$S_n=u_1+u_2+....+u_n=u_1+u_1q+u_1q^2+...+u_1q^{n-1}$

$=u_1(1+q+q^2+....+q^{n-1})$

$qS_n=u_1(q+q^2+q^3+...+q^n)$

$\Rightarrow qS_n-S_n=u_1(q+q^2+q^3+...+q^n)-u_1(1+q+q^2+....+q^{n-1})$

$\Rightarrow S_n(q-1)=u_1(q^n-1)$

$\Rightarrow S_n=\frac{u_1(q^n-1)}{q-1}=\frac{u_1(1-q^n)}{1-q}$

Ta có đpcm.

23 tháng 5 2017

a)
\(S_1=\dfrac{1}{1.5}=\dfrac{1}{5}\)
\(S_2=\dfrac{1}{1.5}+\dfrac{1}{5.9}=\dfrac{1}{4}\left(\dfrac{1}{1}-\dfrac{1}{5}\right)+\dfrac{1}{4}\left(\dfrac{1}{5}-\dfrac{1}{9}\right)\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}\right)=\dfrac{1}{4}\left(1-\dfrac{1}{9}\right)=\dfrac{2}{9}\).
\(S_3=\dfrac{1}{1.5}+\dfrac{1}{5.9}+\dfrac{1}{9.13}=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}\right)\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{13}\right)=\dfrac{3}{13}\).
\(S_4=\dfrac{1}{1.5}+\dfrac{1}{5.9}+\dfrac{1}{9.13}+\dfrac{1}{13.17}\)\(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{17}\right)\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{17}\right)=\dfrac{4}{17}\).
b) Dự đoán công thức : \(S_n=\dfrac{1}{4}\left(1-\dfrac{1}{4n+1}\right)\).
Chứng minh bằng quay nạp:
Với \(n=1\): \(S_1=\dfrac{1}{1.5}=\dfrac{1}{5}\).
Vậy giả thiết quy nạp đúng với n = 1.
Giả sử điều cần chứng minh đúng với \(n=k\).
Nghĩa là: \(S_k=\dfrac{1}{4}\left(1-\dfrac{1}{4k+1}\right)\).
Ta sẽ chứng minh nó đúng với \(n=k+1\): \(S_{k+1}=\dfrac{1}{4}\left(1-\dfrac{1}{4\left(k+1\right)+1}\right)\)
Thật vậy:
\(S_{k+1}=S_k+\dfrac{1}{\left[4\left(k+1\right)-3\right].\left[4\left(k+1\right)+1\right]}\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{4k+1}\right)+\dfrac{1}{4}\left(\dfrac{1}{4\left(k+1\right)-3}-\dfrac{1}{4\left(k+1\right)+1}\right)\)

\(=\dfrac{1}{4}\left(1-\dfrac{1}{4k+1}\right)+\dfrac{1}{4}\left(\dfrac{1}{4k+1}-\dfrac{1}{4\left(k+1\right)+1}\right)\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{4\left(k+1\right)+1}\right)\).
Vậy điều cần chứng minh đúng với mọi n.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)    Ta có:

\({S_n}.q = \left( {{u_1} + {u_1}q + {u_1}{q^2} + ... + {u_1}{q^{n - 1}}} \right).q = {u_1}\left( {1 + q + {q^2} + ... + {q^{n - 1}}} \right).q = {u_1}\left( {q + {q^2} + {q^3} + ... + {q^n}} \right)\)

\(\begin{array}{l}{S_n} - {S_n}.q = {u_1} + {u_1}q + {u_1}{q^2} + ... + {u_1}{q^{n - 1}} - {u_1}\left( {q + {q^2} + {q^3} + ... + {q^n}} \right)\\ = {u_1}\left( {1 + q + {q^2} + ... + {q^{n - 1}}} \right) - {u_1}\left( {q + {q^2} + {q^3} + ... + {q^n}} \right)\\ = {u_1}\left( {1 + q + {q^2} + ... + {q^{n - 1}} - \left( {q + {q^2} + {q^3} + ... + {q^n}} \right)} \right)\\ = {u_1}\left( {1 - {q^n}} \right)\end{array}\)

b)    Ta có: \({S_n} - {S_n}.q = {u_1}\left( {1 - {q^n}} \right) \Leftrightarrow {S_n}\left( {1 - q} \right) = {u_1}\left( {1 - {q^n}} \right) \Leftrightarrow {S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{\left( {1 - q} \right)}}\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Ta có:

\(q.{S_n} = q.\left( {{u_1} + {u_2} + ... + {u_n}} \right) = {u_1}.q + {u_2}.q + ... + {u_n}.q = \left( {{u_2} + {u_3} + ... + {u_n}} \right) + q.{u_n}\)

b) Ta có:

\({u_1} + q.{S_n} = {u_1} + \left( {{u_2} + {u_3} + ... + {u_n}} \right) + q.{u_n} = \left( {{u_1} + {u_2} + {u_3} + ... + {u_n}} \right) + q.{u_n} = {S_n} + {u_1}.{q^n}\)

9 tháng 4 2017

a) Ta có:

b) Từ câu a) ta dự đoán (1), với mọi n ε N* .

Ta sẽ chứng minh đẳng thức (1) bằng phương pháp quy nạp

Khi n = 1, vế trái là , vế phải bằng . Vậy đẳng thức (1) đúng.

Giả sử đẳng thức (1) đúng với n = ≥ 1, tức là

Ta phải chứng minh nó cũng đúng khi n = k + 1, nh=ghĩa là phải chứng minh

Ta có

=

tức là đẳng thức (1) cũng đúng với n = k + 1.

Vậy điều cần chứng minh đúng với mọi n.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(\left| q \right| = \left| {\frac{1}{2}} \right| < 1\)

b) \(\begin{array}{l}{S_n} = {u_1} + {u_2} + ... + {u_n} = {u_1}.\frac{{1 - {q^n}}}{{1 - q}} = 1.\frac{{1 - {{\left( {\frac{1}{2}} \right)}^n}}}{{1 - \frac{1}{2}}} = 2 - 2.{\left( {\frac{1}{2}} \right)^n}\\ \Rightarrow \lim {S_n} = \lim \left[ {2 - 2.{{\left( {\frac{1}{2}} \right)}^n}} \right] = \lim 2 - 2\lim {\left( {\frac{1}{2}} \right)^n} = 2\end{array}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \({u_2} = {u_1}.q\)

\({u_3} = {u_1}.{q^2}\)

\({u_{n - 1}} = {u_1}.{q^{n - 2}}\)

\({u_n} = {u_1}.{q^{n - 1}}\)

\({S_n} = {u_1} + {u_1}q +  \ldots  + {u_1}{q^{n - 2}} + {u_1}{q^{n - 1}}\)

b) \(q{S_n} = q{u_1} + {u_1}{q^2} +  \ldots  + {u_1}{q^{n - 1}} + {u_1}{q^n}\)

c) \({S_n} - q{S_n} = \left( {{u_1} + {u_1}q +  \ldots  + {u_1}{q^{n - 2}} + {u_1}{q^{n - 1}}} \right) - (q{u_1} + {u_1}{q^2} +  \ldots  + {u_1}{q^{n - 1}} + {u_1}{q^n})\).

\(\begin{array}{l} \Leftrightarrow \left( {1 - q} \right){S_n} = {u_1} - {u_1}{q^n} = {u_1}\left( {1 - {q^n}} \right)\\ \Rightarrow {S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\end{array}\)

9 tháng 4 2017

a) Năm số hạng đầu của dãy số là 3, √10, √11, √12, √13.

b) Ta có: u1 = 3 = √9 = √(1 + 8)

u2 = √10 = √(2 + 8)

u3 = √11 = √(3 + 8)

u4 = √12 = √(4 + 8)

...........

Từ trên ta dự đoán un = √(n + 8), với n ε N* (1)

Chứng minh công thức (1) bằng phương pháp quy nạp:

- Với n = 1, rõ ràng công thức (1) là đúng.

- Giả sử (1) đúng với n = k ≥ 1, tức là có uk = √(k + 8) với k ≥ 1.

Theo công thức dãy số, ta có:

uk+1 = .

Như vậy công thức (1) đúng với n = k + 1.


9 tháng 4 2017

a) Năm số hạng đầu của dãy số là 3, √10, √11, √12, √13.

b) Ta có: u1 = 3 = √9 = √(1 + 8)

u2 = √10 = √(2 + 8)

u3 = √11 = √(3 + 8)

u4 = √12 = √(4 + 8)

...........

Từ trên ta dự đoán un = √(n + 8), với n ε N* (1)

Chứng minh công thức (1) bằng phương pháp quy nạp:

- Với n = 1, rõ ràng công thức (1) là đúng.

- Giả sử (1) đúng với n = k ≥ 1, tức là có uk = √(k + 8) với k ≥ 1.

Theo công thức dãy số, ta có:

uk+1 = .

Như vậy công thức (1) đúng với n = k + 1.