A=1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72
Ai nhanh nhat minh se tik cho nha nhan len nhe
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ:\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)
\(=\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(=\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{2}+\frac{1}{2}-\frac{1}{8}\)
\(=1-\frac{1}{8}=\frac{7}{8}\)
A = \(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+...+\frac{89}{90}\)
A = \(\frac{1}{2}+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+...+\left(1-\frac{1}{90}\right)\)
A = \(\left(1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\right)\)
A = \(9-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\right)\)
A = \(9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{9}-\frac{1}{10}\right)\)
A = \(9-\left(1-\frac{1}{10}\right)=9-\frac{9}{10}\)
A = \(\frac{81}{10}\)
\(A=\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+...+\frac{89}{90}=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+...+\left(1-\frac{1}{90}\right)\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}\right)=10-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)\)
\(=10-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)=10-\left(1-\frac{1}{10}\right)=10-\frac{9}{10}=\frac{91}{10}\)
\(S1=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\)
\(S1=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\)
\(S1=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(S1=1-\frac{1}{10}\)
\(S1=\frac{9}{10}\)
CHÚC BN HC GIỎI !!!!!!!!!! TỨ DIỆP THẢO
S=\(\frac{1}{1.2}+\frac{1}{2.3}+...............+\frac{1}{9.10}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...............+\frac{1}{9}-\frac{1}{10}\)
=\(1-\frac{1}{10}\)
=\(\frac{9}{10}\)
Có công thức \(\dfrac{x}{a\left(a+x\right)}=\dfrac{1}{a}-\dfrac{1}{a+x}\) nhé!
Ví dụ: \(\dfrac{2}{2.4}=\dfrac{1}{2}-\dfrac{1}{4}\)
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
\(=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
\(=1-\dfrac{1}{8}=\dfrac{7}{8}\)
Dấu . tức là nhân nhé!
Tổng quát: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
Ta có: \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(\frac{1}{2}-\frac{1}{8}=\frac{4}{8}-\frac{1}{8}=\frac{3}{8}\)
A=1/2+1/6+....+1/56+1/72
A=1/1.2+1/2.3+...+1/7.8+1/8.9
A=1/1-1/2+1/2-1/3+...+1/7-1/8+1/8-1/9
A=1/1-1/9=9/9-1/9=8/9
Thanks ban nha