Cho x ϵ Z, x >0 và x=\(\sqrt{12-\sqrt{12-\sqrt{12-\sqrt{12-...}}}}\). Tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P= \(\dfrac{x}{\sqrt{y}}\)+ \(\dfrac{y}{\sqrt{z}}\)+ \(\dfrac{z}{\sqrt{x}}\)
b, Ta có
\(\frac{\sqrt{x}+1}{y+1}=\frac{\left(\sqrt{x}+1\right)\left(y+1\right)-y-y\sqrt{x}}{y+1}=\sqrt{x}+1-\frac{y\left(\sqrt{x}+1\right)}{y+1}\)
Mà \(y+1\ge2\sqrt{y}\)
=> \(\frac{\sqrt{x}+1}{y+1}\ge\sqrt{x}+1-\frac{1}{2}\sqrt{y}\left(\sqrt{x}+1\right)\)
Khi đó
\(P\ge\frac{1}{2}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3-\frac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)\)
Mà \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{3}=3\)
=> \(P\ge\frac{1}{2}.3+3-\frac{3}{2}=3\)
Vậy MinP=3 khi x=y=z=1
Đặt cho gọn ha
Đặt \(\hept{\begin{cases}x=a^2\\y=b^2\\z=c^2\end{cases}}\left(a;b;c>0\right)\)
Bài toán trở thành : Cho a;b;c > 0 và \(a^2+b^2+c^2=12\)
\(CMR:a^3+b^3+c^3\ge24\)
Dự đoán dấu "=" khi a = b = c = 2
Ta có : \(a\left(a-2\right)^2\ge0\)
\(\Leftrightarrow a\left(a^2-4a+4\right)\ge0\)
\(\Leftrightarrow a^3-4a^2+4a\ge0\)
\(\Leftrightarrow a^3\ge4a^2-4a\)
Chứng minh tương tự được \(b^3\ge4b^2-4b\)
\(c^3\ge4c^2-4c\)
Cộng hết vô ta được \(a^3+b^3+c^3\ge4\left(a^2+b^2+c^2\right)-4\left(a+b+c\right)\)
\(=4.12+4\left(a+b+c\right)\)
\(=48-4\left(a+b+c\right)\)(1)
Ta có \(\left(a-2\right)^2\ge0\)
\(\Leftrightarrow a^2-4a+4\ge0\)
\(\Leftrightarrow a^2+4\ge4a\)
C/m tương tự \(b^2+4\ge4b\)
\(c^2+4\ge4c\)
Cộng lại được \(a^2+b^2+c^2+12\ge4\left(a+b+c\right)\)
\(\Leftrightarrow12+12\ge4\left(a+b+c\right)\)
\(\Leftrightarrow24\ge4\left(a+b+c\right)\)
\(\Leftrightarrow-4\left(a+b+c\right)\ge-24\)(2)
Từ (1) và (2) \(\Rightarrow a^3+b^3+c^3\ge48-24=24\left(ĐPCM\right)\)
Vậy bài toán được c/m
\(\sqrt{4x+2\sqrt{x}+1}\le\sqrt{4x+\dfrac{1}{2}\left(2^2+x\right)+1}=\sqrt{\dfrac{9x}{2}+3}\)
\(=\dfrac{1}{\sqrt{21}}.\sqrt{21}.\sqrt{\dfrac{9x}{2}+3}\le\dfrac{1}{2\sqrt{21}}\left(21+\dfrac{9x}{2}+3\right)=\dfrac{1}{2\sqrt{21}}\left(\dfrac{9x}{2}+24\right)\)
Tương tự và cộng lại:
\(A\le\dfrac{1}{2\sqrt{21}}\left(\dfrac{9}{2}\left(x+y+z\right)+72\right)=3\sqrt{21}\)
\(A_{max}=3\sqrt{21}\) khi \(x=y=z=4\)
\(A=1\sqrt{4x+2\sqrt{x}+1}+1.\sqrt{4y+2\sqrt{y}+1}+1\sqrt{4z+2\sqrt{z}+1}\)
\(\le\sqrt{\left(1+1+1\right)\left(4\left(x+y+z\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3\right)}\)
\(=\sqrt{3.\left[51+\dfrac{4\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}{2}\right]}\)
\(\le\sqrt{3.\left[51+\dfrac{x+y+z+12}{2}\right]}\)
\(=\sqrt{189}\)
Dấu "=" xảy ra <=> x = y = z = 4
Ta có \(P^2=\left(\sum\dfrac{x}{\sqrt{y}}\right)^2=\sum\dfrac{x^2}{y}+2\left(\sum\dfrac{xy}{\sqrt{yz}}\right)\)
Mà \(\dfrac{x^2}{y}+\dfrac{xy}{\sqrt{yz}}+\dfrac{xy}{\sqrt{yz}}+z\ge4\sqrt[4]{x^4}=4x\)
Tương tự rồi cộng lại, ta có
\(P^2+x+y+z\ge4\left(x+y+z\right)\Rightarrow P^2\ge3\left(x+y+z\right)=36\Rightarrow P\ge6\)
\(x=\sqrt{12-\sqrt{12-\sqrt{12-\sqrt{12-...}}}}\)
=>\(x^2=12-x\)
=>\(x^2+x-12=0\)
=>(x+4)(x-3)=0
=>\(\left[{}\begin{matrix}x+4=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\x=-4\left(loại\right)\end{matrix}\right.\)