cho tam giác ABC,ba đường cao AD,BE,CF.Đường thẳng qua B và song song với CF cắt AC tại H . CM:
a) AC là trung bình nhân của AE và AH
b) \(\dfrac{1}{CF^2}\)= \(\dfrac{1}{BC^2}\)+ \(\dfrac{1}{4AD^2}\)
Mọi người giúp em với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAFH và ΔADB có
\(\widehat{AFH}=\widehat{ADB}\left(=90^0\right)\)
\(\widehat{BAD}\) chung
Do đó: ΔAFH∼ΔADB(g-g)
b) Xét ΔBHF và ΔCHE có
\(\widehat{BFH}=\widehat{CEH}\left(=90^0\right)\)
\(\widehat{BHF}=\widehat{CHE}\)(đối đỉnh)
Do đó: ΔBHF∼ΔCHE(g-g)
\(\Rightarrow\frac{BH}{CH}=\frac{HF}{HE}=k\)(tỉ số đồng dạng)
hay \(BH\cdot HE=CH\cdot HF\)(đpcm)
a) Xét ΔDBA và ΔFBC có:
\(\widehat{CBA}:chung\)
\(\widehat{ADB}=\widehat{CFB}\) \(=90^0\)
=> ΔDBA∼ΔFBC (g.g)
\(\Rightarrow\frac{DB}{AB}=\frac{BF}{BC}\)
Xét ΔABC và ΔDBF có:
\(\widehat{CBA}: chung\)
\(\frac{DB}{AB}=\frac{BF}{BC}\) (cmtrn)
=> ΔABC∼ΔDBF (c.g.c)
Sửa đề: ΔABC cân tại A
a: Sửa đề: AB là trung bình nhân của AE và AH
CF//BH
CF\(\perp\)AB
Do đó: BA\(\perp\)BH
=>ΔBAH vuông tại B
Xét ΔBAH vuông tại B có BE là đường cao
nên \(AE\cdot AH=AB^2\)
=>\(AB=\sqrt{AE\cdot AH}\)
=>AB là trung bình nhân của AE và AH
b: Từ C, kẻ CG\(\perp\)CB, \(G\in AB\)
ΔABC cân tại A
mà AD là đường cao
nên D là trung điểm của BC
Xét ΔBCG có
D là trung điểm của BC
DA//CG
Do đó: A là trung điểm của BG
Xét ΔBCG có D,A lần lượt là trung điểm của BC,BG
=>DA là đường trung bình
=>CG=2DA
=>4DA^2=CG^2
Xét ΔCBG vuông tại C có CF là đường cao
nên \(\dfrac{1}{CF^2}=\dfrac{1}{CG^2}+\dfrac{1}{CB^2}\)
=>\(\dfrac{1}{CF^2}=\dfrac{1}{4DA^2}+\dfrac{1}{CB^2}\)