cho tam giác ABC nhọn có 3 độ dài cạnh là a,b,c . Tính diện tích tam giác theo a,b,c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý hàm cosin:
\(b=\sqrt{a^2+c^2-2ac.cosB}=7\)
Diện tích:
\(S_{ABC}=\dfrac{1}{2}ac.sinB=10\sqrt{3}\)
a: Xét ΔCAB có \(cosC=\dfrac{CA^2+CB^2-AB^2}{2\cdot CA\cdot CB}\)
=>\(\dfrac{2^2+3-AB^2}{2\cdot2\cdot\sqrt{3}}=cos30=\dfrac{\sqrt{3}}{2}\)
=>\(7-AB^2=4\sqrt{3}\cdot\dfrac{\sqrt{3}}{2}=2\cdot3=6\)
=>AB=1
b: Xét ΔABC có \(AB^2+BC^2=CA^2\)
nên ΔABC vuông tại B
=>\(S_{BAC}=\dfrac{1}{2}\cdot BA\cdot BC=\dfrac{1}{2}\cdot1\cdot\sqrt{3}=\dfrac{\sqrt{3}}{2}\)
Độ dài đường trung tuyến kẻ từ A là:
\(m_A=\sqrt{\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}}=\sqrt{\dfrac{4+1}{2}-\dfrac{3}{4}}=\dfrac{\sqrt{7}}{2}\)
a)
Vì chiều cao tam giác ABC cũng là chiều cao của tam giác ACM là:
\(30.\frac{2}{3}=20\left(cm\right)\)
Diện tích tam giác ABC là:
\(30.20:2=300\left(cm^2\right)\)
b)
Diện tích tam giác ACM là:
\(30.20:100=60\left(cm^2\right)\)
Độ dài cạnh CM là:
\(60.2:20=6\left(cm\right)\)
Đáp số: ...
#include <bits/stdc++.h>
using namespace std;
double a,b,c,p,s;
int main()
{
cin>>a>>b>>c;
if (a+b>c && b+c>a && c+b>a)
{
p=(a+b+c)/2;
s=sqrt(p*(p-a)*(p-b)*(p-c));
cout<<fixed<<setprecision(2)<<s;
}
else cout<<"Day khong la ba canh trong mot tam giac";
return 0;
}
a = 60cm
p = 160/2 = 80cm
p = \(\dfrac{a+b+c}{2}\) (1) => \(\dfrac{2p-a}{2}\) = \(\dfrac{b+c}{2}\)
Vì a, p là 1 hằng số nên để S đạt GTLN <=> (p-b) và (p-c) đạt GTLN
Áp dụng bđt Cosin, ta có:
\(\sqrt{\left(p-b\right)\left(p-c\right)}\) <= \(\dfrac{p-b+p-c}{2}\) = \(\dfrac{2p-b-c}{2}\)
=> \(\dfrac{S}{\sqrt{p\left(p-a\right)}}\) <= \(p-\dfrac{b+c}{2}\) = \(p-\dfrac{2p-a}{2}\) = \(\dfrac{a}{2}\)
=> 2S <= \(a\sqrt{p\left(p-a\right)}\) = \(60\sqrt{80.\left(80-60\right)}\) = 2400
=> S <= 1200 (\(cm^2\))
Dấu "=" xảy ra
<=> \(p-b\) = \(p-c\)
<=> b = c
Thay b = c vào (1), ta được:
p = \(\dfrac{a+2b}{2}\) => 80 = \(\dfrac{60+2b}{2}\) => b = c = 50 (cm)
=> đpcm
Gọi AH là đường cao
Sabc=\(S_{abc}=\frac{\left(AH\cdot AB\right)}{2}\)