K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2023

Mình tự làm tận 1h nên hơi dài 1 tí nhưng chắc chắn đúng đó :))

Ta có: x2 + y2 + xy .- 3x - 3y + 3 = 0

     =>( x2 - 2x + 1) - x + ( y2 - 2y + 1) - y + xy + 1 = 0

     => (x-1)2 + (y-1)2 + ( -x + -y + xy +1) = 0

     => (x-1)2 + (y-1) + [(-x+ xy) + (-y+1)] = 0

    => (x-1)2 + (y-1)+ [ x(y-1) - (y-1)] = 0

    => (x-1)2 + (y-1)2 + (x-1)(y-1) = 0

    => (x-1)2 +  2.1/2.(x-1)(y-1) + (1/2)2.(y-1)2 + 3/4.(y-1)2 = 0

    => [x-1+1/2(y-1) ]2 + 3/4.(y-1)2  = 0

   Vì: [x-1+1/2(y-1) ] >= 0 với mọi x;y thuộc R

         3/4.(y-1)2 >= 0 với mọi y thuộc R

     => (x-1+1/2y -1/2 = 0) và ( y-1 = 0)

     => (x = 1/2 -1/2y+1) và (y=1)

      => x = y =1

Chỗ này thay giá trị vào biểu thức rồi chứng minh = cách chỉ ra các cơ số của từng lũy thừa là số nguyên là xong.

 

     

 

23 tháng 10 2023

đúng đó

 

 

6 tháng 2 2019

Đáp án C

Phương pháp:

- Sử dụng tính đơn điệu của hàm số để giải phương trình, từ đó đánh giá giá trị lớn nhất của biểu thức.

Cách giải:

 

<=>  

 

 

  (2)

Đặt  

=> f(t) đồng biến trên (0;+∞) 

<=>

<=>

Khi đó, 

vì 

Vậy Pmax = 1 khi và chỉ khi 

14 tháng 4 2019

13 tháng 9 2019

Đáp án C

Phương pháp giải:

- Sử dụng tính đơn điệu của hàm số để giải phương trình, từ đó đánh giá giá trị lớn nhất của biểu thức.

Lời giải:

log 3 x + y x 2 + y 2 + x y + 2 =  x ( x - 3 ) + y ( y - 3 ) + x y (1)

(2)

Đặt

 

=> f(t) đồng biến trên (0;+∞)

Khi đó, 

vì 

Vậy Pmax = 1 khi  và chỉ khi 

17 tháng 6 2017

15 tháng 11 2018

AH
Akai Haruma
Giáo viên
2 tháng 1 2021

Mình nghĩ phần phân thức là $3x+3y+2z$ thay vì $3x+3y+3z$. Nếu là vậy thì bạn tham khảo lời giải tại link sau:

Cho x, y, z là các số thực dương thỏa mãn đẳng thức xy yz zx=5. Tìm GTNN của biểu thức \(P=\frac{3x 3y 2z}{\sqrt{6\left(... - Hoc24

2 tháng 1 2021

mình cảm ơn bạn nhiều ạ <3 bạn có thể giúp mình mấy câu mình vừa đăng không

 

25 tháng 11 2019

Chọn A.

Phương pháp:

- Biến đổi điều kiện bài cho về dạng f u = f v  với u, v là các biểu thức của x, y.

- Xét hàm f t  suy ra mối quan hệ của u, v rồi suy ra x, y.

- Đánh giá P theo biến t=x+y bằng cách sử dụng phương pháp hàm số.

Cách giải:

20 tháng 9 2019

\(P=\sqrt{\frac{1}{36}\left(11a+7b\right)^2+\frac{59\left(a-b\right)^2}{36}}+\sqrt{\frac{1}{36}\left(7a+11b\right)+\frac{59\left(a-b\right)^2}{36}}\)

\(=\sqrt{\frac{1}{16}\left(3a+5b\right)^2+\frac{5\left(a-b\right)^2}{16}}+\sqrt{\frac{1}{16}\left(5a+3b\right)^2+\frac{5\left(a-b\right)^2}{16}}\)

\(\ge\frac{1}{6}\left(11a+7b\right)+\frac{1}{6}\left(7a+11b\right)+\frac{1}{4}\left(3a+5b\right)+\frac{1}{4}\left(5a+3b\right)\)

\(=5\left(a+b\right)=5.2016=10080\)

23 tháng 9 2019

alibaba nguyễn Em kiểm tra lại bài làm của mình nhé!