Cho tam giác ABC vuông tại B. Vẽ tia AD là phân giác của BAC ( D ∈ BC ). Vẽ tia CE là phân giác BCA ( E ∈ AB ). Hai tia AD và CE cắt nhau tại I. a) Chứng minh rằng góc CIA = 135 độ b) Vẽ tia Cx là tia đối CA . Tia phân giác của góc BCx cắt tia AD tại K . Tính góc CKA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì AD là phân giác BAC => DAC = DAB = BAC : 2 hay 2DAC = 2DAB = BAC
Vì CE là phân giác BCA => BCE = ECA = BCA : 2 hay 2BCE = 2ECA = BCA
Xét △ABC vuông tại B có: BAC + BCA = 90o (2 góc nhọn trong △ vuông)
=> 2DAC + 2ECA = 90o => DAC + ECA = 45o
Xét △ICA có: ICA + IAC + CIA = 180o (tổng 3 góc trong tam giác)
=> 45o + CIA = 180o => CIA = 135o
b, Xét △ABC có BCx là góc ngoài của △ tại đỉnh C, ta có: BCx = CBA + BAC => BCx = 90o + BAC
Vì CK là phân giác BCx \(\Rightarrow\frac{\widehat{BCx}}{2}=\frac{90^o+\widehat{BAC}}{2}\)\(\Rightarrow\widehat{BCK}=45^o+\widehat{DAC}\)
Xét △KCA có: CKA + KCA + CAK = 180o (tổng 3 góc trong △)
=> CKA + KCD + DCI + ICA + CAK = 180o
=> CKA + 45o + DAC + DCI + ICA + CAK = 180o
=> CKA + (DAC + ICA) + (DCI + CAK) = 135o
=> CKA + 45o + 45o = 135o
=> CKA = 45o
a: Xét ΔBEC vuông tại E và ΔCDB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó:ΔBEC=ΔCDB
b: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó:ΔABD=ΔACE
Suy ra: AD=AE
c: Ta có: ΔBEC=ΔCDB
nên \(\widehat{IBC}=\widehat{ICB}\)
hayΔIBC cân tại I
Xét ΔABI và ΔACI có
AB=AC
AI chung
BI=CI
Do đó:ΔABI=ΔACI
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
d: Xét ΔABC có AE/AB=AD/AC
nên DE//BC
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
a) - Xét tam giác ABD và tam giác AED, có:
+ Chung AD
+ góc BAD = góc EAD (AD là tia phân giác của góc BAC)
+ AB = AE (gt)
=> tam giác ABD = tam giác AED (cgc)
a: ΔBAC vuông tại B
=>\(\widehat{BAC}+\widehat{BCA}=90^0\)
=>\(2\left(\widehat{IAC}+\widehat{ICA}\right)=90^0\)
=>\(\widehat{IAC}+\widehat{ICA}=45^0\)
Xét ΔIAC có \(\widehat{IAC}+\widehat{ICA}+\widehat{CIA}=180^0\)
=>\(\widehat{CIA}=180^0-45^0=135^0\)
b: CI và CK là hai tia phân giác của hai góc kề bù
=>\(\widehat{ICK}=90^0\)
\(\widehat{CIK}+\widehat{CIA}=180^0\)
=>\(\widehat{CIK}=45^0\)
Xét ΔCKI vuông tại C có \(\widehat{CIK}=45^0\)
nên ΔCKI vuông cân tại C
=>\(\widehat{CKI}=\widehat{CKA}=45^0\)