K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2016

xét tam giác

16 tháng 7 2023

ai trl nhanh nhất mik tích cho nhé

2 tháng 8 2017

b) C/m: HA là tia phân giác của góc IHK (sai đề bài)

27 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

5 tháng 1 2021

hình bn ơi

 

14 tháng 3 2016

A E C B H D

hình vẽ đâu rùi còn về phần giao điểm thì mk ko hiểu là cụ thể ở chỗ nào nên chưa giải đc câu c

giải tạm a và b nhé

14 tháng 3 2016

a) gọi giao của AB và DH là P; giao của AC và HE là M

xét 2 tam giác ADP và AHP có:

PD=PH(gt)

AB(chung)

APD=APH=90(độ)

suy ra tam giác ADP=AHP(c.g.c) suy ra AD=AH(1)

CM tương tự ta có: tam giác AKH =AKE(c.g.c) suy ra AH=AE(2)

từ (1)(2) suy ra : Ah=AE

AD=AH

suy ra AD=AE suy ra tam giác DAE cân tại A

a) Ta có: AB là đường trung trực của HD(gt)

⇔A nằm trên đường trung trực của HD

⇔AD=AH(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: AC là đường trung trực của HE(gt)

⇔A nằm trên đường trung trực của HE

⇔AE=AH(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AE=AD(đpcm)

b) Xét ΔADH có AD=AH(cmt)

nên ΔADH cân tại A(Định nghĩa tam giác cân)

Ta có: ΔADH cân tại A(cmt)

mà AB là đường trung trực ứng với cạnh đáy HD(gt)

nên AB là đường phân giác ứng với cạnh HD(Định lí tam giác cân)

⇔AB là tia phân giác của \(\widehat{DAH}\)

\(\widehat{DAH}=2\cdot\widehat{BAH}\)

Xét ΔAHE có AH=AE(cmt)

nên ΔAHE cân tại A(Định nghĩa tam giác cân)

Ta có: ΔAHE cân tại A(cmt)

mà AC là đường trung trực ứng với cạnh đáy HE(gt)

nên AC là đường phân giác ứng với cạnh HE(Định lí tam giác cân)

⇔AC là tia phân giác của \(\widehat{HAE}\)

\(\widehat{HAE}=2\cdot\widehat{CAH}\)

Ta có: \(\widehat{DAH}+\widehat{EAH}=\widehat{DAE}\)(tia AH nằm giữa hai tia AD,AE)

mà \(\widehat{DAH}=2\cdot\widehat{BAH}\)(cmt)

và \(\widehat{HAE}=2\cdot\widehat{CAH}\)(cmt)

nên \(2\cdot\widehat{BAH}+2\cdot\widehat{CAH}=\widehat{DAE}\)

\(\Leftrightarrow\widehat{DAE}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)\)

mà \(\widehat{BAH}+\widehat{CAH}=\widehat{BAC}\)(tia AH nằm giữa hai tia AB,AC)

nên \(\widehat{DAE}=2\cdot\widehat{BAC}\)(đpcm)

c) Ta có: AB là đường trung trực của HD(gt)

⇔AB vuông góc với HD tại trung điểm của HD

mà AB cắt HD tại I(gt)

nên AI⊥HD tại I và I là trung điểm của DH

Xét ΔADI vuông tại I và ΔAHI vuông tại I có

AD=AH(cmt)

AI chung

Do đó: ΔADI=ΔAHI(cạnh huyền-cạnh góc vuông)