tính nhanh tổng sau:
a) A=\(\dfrac{^25}{1x6}+\dfrac{^25}{6x11}+.....+\dfrac{^25}{26x31}\)
b) B= \(\dfrac{4}{11x16}+\dfrac{4}{16x21}+\dfrac{4}{21x26}+.....+\dfrac{4}{61x66}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`A = 55/( 11xx16 ) + 55/( 16xx21 ) + 55/( 21xx26 ) + 55/( 26xx31) + 55/( 31xx36)+55/(36xx41)`
`A = 11 xx ( 5/( 11xx16 ) + 5/( 16xx21 ) + 5/( 21xx26 ) + 5/( 26xx31) + 5/( 31xx36)+5/(36xx41)`
`A = 11 xx ( 1/11 - 1/16 + 1/16 - 1/21 + 1/21 - 1/26 + 1/26 - 1/31 + 1/31 - 1/36 + 1/36 - 1/41 )`
`A = 11 xx ( 1/11 - 1/41 )`
`A = 1 - 11/41`
`A = 30/41`
\(A=55.\left(\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{26}+\dfrac{1}{26}-\dfrac{1}{31}+\dfrac{1}{31}-\dfrac{1}{36}+\dfrac{1}{36}-\dfrac{1}{41}\right)\)
\(A=55\times\left(\dfrac{1}{11}-\dfrac{1}{41}\right)=55\times\dfrac{30}{451}=\dfrac{150}{41}\)
A = \(\dfrac{25}{1\times6}\) + \(\dfrac{25}{6\times11}\) + \(\dfrac{25}{11\times16}\)+\(\dfrac{25}{16\times21}\)+ \(\dfrac{25}{26\times31}\)
A = 5 \(\times\) ( \(\dfrac{5}{1\times6}\)+\(\dfrac{5}{6\times11}\)+\(\dfrac{5}{11\times16}\)+\(\dfrac{5}{16\times21}\)+\(\dfrac{5}{26\times31}\))
A = 5 \(\times\) ( \(\dfrac{1}{1}\) - \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{11}\)+ \(\dfrac{1}{11}\)- \(\dfrac{1}{16}\)+ \(\dfrac{1}{16}\)- \(\dfrac{1}{21}\)+ \(\dfrac{1}{26}\)- \(\dfrac{1}{31}\))
A = 5 \(\times\)( 1 - \(\dfrac{1}{31}\))
A = 5 \(\times\) \(\dfrac{30}{31}\)
A = \(\dfrac{150}{31}\)
a) \(\dfrac{2}{9}+\dfrac{5}{9}=\dfrac{7}{9};\dfrac{5}{9}+\dfrac{2}{9}=\dfrac{7}{9}\)
Vậy: \(\dfrac{2}{9}+\dfrac{5}{9}=\dfrac{5}{9}+\dfrac{2}{9}\)
b) \(\dfrac{3}{25}+\dfrac{4}{25}+\dfrac{7}{25}=\dfrac{14}{25};\dfrac{3}{25}+\dfrac{7}{25}+\dfrac{4}{25}=\dfrac{14}{25}\)
Vậy: \(\dfrac{3}{25}+\dfrac{4}{25}+\dfrac{7}{25}=\dfrac{3}{25}+\dfrac{7}{25}+\dfrac{4}{25}\)
dễ lắm bạn ơi bọn mình học rùi
bn lấy tử số của từng mỗi rồi chia cho mẫu của từng cái rồi rút gọn lafd ra
\(\dfrac{\dfrac{5}{7}+\dfrac{5}{9}+\dfrac{5}{11}}{\dfrac{25}{7}+\dfrac{25}{9}+\dfrac{25}{11}}\cdot\dfrac{4+\dfrac{4}{73}-\dfrac{4}{115}}{5+\dfrac{5}{73}-\dfrac{1}{23}}\)
=\(\dfrac{5\cdot\left(\dfrac{1}{7}+\dfrac{1}{9}+\dfrac{1}{11}\right)}{25\left(\dfrac{1}{7}+\dfrac{1}{9}+\dfrac{1}{11}\right)}\cdot\dfrac{4\left(1+\dfrac{1}{73}+\dfrac{1}{115}\right)}{5+\dfrac{5}{73}-\dfrac{5}{115}}\)
=\(\dfrac{5}{25}\cdot\dfrac{4\left(1+\dfrac{1}{73}-\dfrac{1}{115}\right)}{5\left(1+\dfrac{1}{73}-\dfrac{1}{115}\right)}\)
=\(\dfrac{1}{5}\cdot\dfrac{4}{5}\)=\(\dfrac{4}{25}\)
a)\(\dfrac{7}{-25}+-\dfrac{8}{25}=-\dfrac{15}{25}=-\dfrac{3}{5}\)
b)\(\dfrac{7}{21}-\dfrac{9}{-36}\)
\(=\dfrac{1}{3}+\dfrac{1}{4}\)
\(=\dfrac{4}{12}+\dfrac{3}{12}=\dfrac{7}{12}\)
c)\(-\dfrac{3}{4}+\dfrac{2}{7}+\dfrac{1}{4}+\dfrac{5}{7}\)
\(=\left(-\dfrac{3}{4}+\dfrac{1}{4}\right)+\left(\dfrac{2}{7}+\dfrac{5}{7}\right)\)
\(=-\dfrac{1}{2}+1\)
\(=\dfrac{2}{2}-\dfrac{1}{2}=\dfrac{1}{2}\)
\(a,\dfrac{7}{-25}+\dfrac{-8}{25}=\dfrac{-7}{25}+\dfrac{-8}{25}=\dfrac{-15}{25}=\dfrac{-3}{5}\\ b,\dfrac{7}{21}-\dfrac{9}{-36}=\dfrac{7}{21}+\dfrac{9}{36}=\dfrac{7}{12}\\ c,\dfrac{-3}{4}+\dfrac{2}{7}+\dfrac{1}{4}+\dfrac{5}{7}\\ =\left(\dfrac{-3}{4}+\dfrac{1}{4}\right)+\left(\dfrac{2}{7}+\dfrac{5}{7}\right)\\ =-\dfrac{1}{2}+1\\ =\dfrac{1}{2}\)
a/\(\left(\dfrac{7}{9}\times\dfrac{9}{7}\right)\times\dfrac{25}{28}\)
\(=1\times\dfrac{25}{28}\)
\(=\dfrac{25}{28}\)
b/\(\dfrac{4}{7}\times\dfrac{17}{18}\times\dfrac{7}{4}\times\dfrac{18}{17}\)
\(=\left(\dfrac{4}{7}\times\dfrac{7}{4}\right)\times\left(\dfrac{17}{18}\times\dfrac{18}{17}\right)\)
\(=1\times1\)
\(=1\)
`#3107.101107`
a)
`2/5 \sqrt{25} - 1/2 \sqrt{4}`
`= 2/5 * \sqrt{5^2} - 1/2 * \sqrt{2^2}`
`= 2/5*5 - 1/2*2`
`= 2 - 1`
`= 1`
b)
`0,5*\sqrt{0,09} + 5*\sqrt{0,81}`
`= 0,5*\sqrt{(0,3)^2} + 5*\sqrt{(0,9)^2}`
`= 0,5*0,3 + 5*0,9`
`= 0,15 + 4,5`
`= 4,65`
c)
`2/5\sqrt{25/36} - 5/2\sqrt{4/25}`
`= 2/5*\sqrt{(5^2)/(6^2)} - 5/2*\sqrt{(2^2)/(5^2)}`
`= 2/5*5/6 - 5/2*2/5`
`= 1/3 - 1`
`= -2/3`
d)
`-2 \sqrt{(-36)/(-16)} + 5 \sqrt{(-81)/(-25)}`
`= -2*\sqrt{36/16} + 5*\sqrt{81/25}`
`= -2*\sqrt{(6^2)/(4^2)} + 5*\sqrt{(9^2)/(5^2)}`
`= -2*6/4 + 5*9/5`
`= -3 + 9`
`= 6`
a) \(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{26\cdot31}\)
\(=1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{26}-\dfrac{1}{31}\)
\(=1-\dfrac{1}{31}\)
\(=\dfrac{30}{31}\)
b) \(\dfrac{4}{11\cdot16}+\dfrac{4}{16\cdot21}+...+\dfrac{4}{61\cdot66}\)
\(=\dfrac{4}{5}\cdot\left(\dfrac{5}{11\cdot16}+\dfrac{5}{16\cdot21}+...+\dfrac{5}{61\cdot66}\right)\)
\(=\dfrac{4}{5}\cdot\left(\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-...+\dfrac{1}{61}-\dfrac{1}{66}\right)\)
\(=\dfrac{4}{5}\cdot\left(\dfrac{1}{11}-\dfrac{1}{66}\right)\)
\(=\dfrac{4}{5}\cdot\dfrac{5}{66}\)
\(=\dfrac{4}{66}\)
\(=\dfrac{2}{33}\)
a) A = 5²/(1.6) + 5²/(6.11) + ... + 5²/(26.31)
= 5.[5/(1.6) + 5/(6.11) + ...+ 5/(26.31)]
= 5.(1 - 1/6 + 1/6 - 1/11 + ... + 1/26 - 1/31)
= 5.(1 - 1/31)
= 5.30/31
= 150/31
b) B = 4/(11.16) + 4/(16.21) + ... + 4/(61.66)
= 4/5 .[5/(11.16) + 5/(16.21) + ... + 5/(61.66)]
= 4/5.(1/11 - 1/16 + 1/16 - 1/21 + ... + 1/61 - 1/66)
= 4/5.(1/11 - 1/66)
= 4/5 . 5/66
= 2/33