Chứng minh rằng:1/31+1/32+...+1/60<4/5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng) Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ; (1/51 + 1/52+...+1/59+1/60) > 1/6 S > 1/4 + 1/5 + 1/6.
Trong khi đó (1/4 + 1/5 + 1/6) > 3/5 =>S > 3/5 (1) S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60) Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng) => S < 4/5 (2)
Từ (1) và (2) => 3/5 <S<4/5
\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+...+\frac{1}{60}\right)\)
Mà \(\left(\frac{1}{31}+...+\frac{1}{40}\right)>\frac{1}{40}\cdot10=\frac{1}{4}\)
Tương tự : \(\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)>\frac{1}{5}\)
\(\left(\frac{1}{51}+...+\frac{1}{60}\right)>\frac{1}{6}\)
\(S>\frac{1}{4}+\frac{1}{5}+\frac{1}{6}>\frac{3}{5}\)(*1)
Mặt khác:\(\left(\frac{1}{31}+...+\frac{1}{40}\right)< \frac{1}{31}\cdot10=\frac{1}{3}\)
\(\Rightarrow S< \frac{4}{5}\)(*2)
Từ (*1)(*2)= 3/5<S<4/5
\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)
\(\Rightarrow S=\left(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{45}\right)+\frac{1}{46}+\frac{1}{47}...+\frac{1}{60}\)
\(\Rightarrow S< \left(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)+\frac{1}{46}+\frac{1}{47}...+\frac{1}{60}\)(15 số hạng \(\frac{1}{30}\))
\(\Rightarrow S< \frac{15}{30}+\frac{1}{46}+\frac{1}{47}...+\frac{1}{60}< \frac{1}{2}< \frac{4}{5}\)
Vậy \(S< \frac{4}{5}\)
S < 1/40 x 30 = 3/4 < 4/5
=) S < 4/5
Vậy S < 4/5
học tốt nha
Ta có:
S=131+132+133+...+160S=131+132+133+...+160
⇒S=(131+132+...+140)+(141+142+...+150)+(151+152+...+160)⇒S=(131+132+...+140)+(141+142+...+150)+(151+152+...+160)
Nhận xét:
131+132+...+140>140+140+...+140=14131+132+...+140>140+140+...+140=14
141+142+...+150>150+150+...+150=15141+142+...+150>150+150+...+150=15
151+152+...+160>160+160+...+160=16151+152+...+160>160+160+...+160=16
⇒S>14+15+16=3760>35⇒S>14+15+16=3760>35
⇒S>35(1)⇒S>35(1)
Lại có:
S=(131+132+...+140)+(141+142+...+150)+(151+152+...+160)S=(131+132+...+140)+(141+142+...+150)+(151+152+...+160)
Nhận xét:
131+132+...+140<130+130+...+130=13131+132+...+140<130+130+...+130=13
141+142+...+150<140+140+...+140=14141+142+...+150<140+140+...+140=14
151+152+...+160<150+150+...+150=15151+152+...+160<150+150+...+150=15
⇒S<13+14+15=4760<45⇒S<13+14+15=4760<45
⇒S<45(2)⇒S<45(2)
Từ (1)(1) và (2)(2)
⇒35<S<45⇒35<S<45 (Đpcm)
mình nhằm nha
để gửi lại ,
xin lỗi nhiều
hì
Ta có: S = \(\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+...+\frac{1}{60}\right)\)
Nhận xét: \(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\)
\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{10}{50}=\frac{1}{5}\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{10}{60}=\frac{1}{6}\)
\(\Rightarrow S>\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\)
\(\Rightarrow S>\frac{37}{60}>\frac{36}{60}=\frac{3}{5}\) (1)
Lại có: \(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}< \frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{10}{30}=\frac{1}{3}\)
\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}< \frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}< \frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{10}{50}=\frac{1}{5}\)
\(\Rightarrow S< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}\)
\(\Rightarrow S< \frac{47}{60}< \frac{48}{60}=\frac{4}{5}\) (2)
Từ (1) và (2) => \(\frac{3}{5}< S< \frac{4}{5}\) (đpcm)
AI KẾT BN KO!
TIỆN THỂ TK MÌNH LUÔN NHA!
KONOSUBA!!!
AI TK MÌNH MÌNH TK LẠI 3 LẦN.
S có 30 số hạng. Nhóm thành 3 nhóm, mỗi nhóm 10 số hạng
\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{42}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
\(S<\left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)+\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\)
\(S<\frac{10}{30}+\frac{10}{40}+\frac{10}{50}\) ; \(S<\frac{47}{60}<\frac{48}{60}=\frac{4}{5}\) (1)
\(S>\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)\)
\(S<\frac{10}{40}+\frac{10}{50}+\frac{10}{60}\) ; \(S>\frac{37}{60}>\frac{36}{60}=\frac{3}{5}\) (2)
Từ (1) và (2) => \(\frac{3}{5}\)<S<\(\frac{4}{5}\)
\(S=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
Ta có: \(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\)
\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{10}{50}=\frac{1}{5}\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{10}{60}\)
\(\Rightarrow S>\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=\frac{37}{60}>\frac{36}{60}=\frac{3}{5}\) (1)
Lại có: \(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}< \frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{10}{30}=\frac{1}{3}\)
\(\frac{1}{41}+...+\frac{1}{50}< \frac{1}{40}+...+\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}< \frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{10}{50}=\frac{1}{5}\)
\(\Rightarrow S< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}\) (2)
Từ (1) và (2) => \(\frac{3}{5}< S< \frac{4}{5}\)
đặt A = 1/31 + 1/32 + ... + 1/60
Tách A thành 3 nhóm ta được :
A = ( 1/31 + 1/32 + ... + 1/40 ) + ( 1/41 + 1/42 + ... + 1/50 ) + ( 1/51 + 1/52 + ... + 1/60 )
A < 1/30 x 10 + 1/40 x 10 + 1/50 x 10
A < 1/3 + 1/4 + 1/5 = 47/60 < 48/60 = 4/5 ( đpcm )
Ta có: S=(1/31+1/32+...+1/40)+(1/41+1/42+...+1/50)+(1/51+1/52+...+1/60)
Mà: 1/31+1/32+...+1/40<1/31.10=10/30=1/3 (gồm 10 số hạng)
=> S<4/5