Mọi người ơi giúp mik với!Cám ơn!
Rút gọn:A=1+2+2^2+2^3+2^4+....+2^10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=1-2+2^2-2^3+2^4-2^5+...+2^{98}-2^{99}\)
\(=1-\left(2-2^2\right)-\left(2^3-2^4\right)-...-\left(2^{98}-2^{99}\right)\)
\(=1-2\left(1-2\right)-2^2\left(1-2\right)-...-2^{98}\left(1-2\right)\)
\(=1+2+2^2+...+2^{98}\)
\(2M=2+2^2+2^3+...+2^{99}\)
\(2M-M=\left(2+2^2+2^3+...+2^{99}\right)-\left(1+2+2^2+...+2^{98}\right)\)
\(M=2^{99}-1\)
a: \(\dfrac{3x+2}{4}-\dfrac{3x+1}{3}=\dfrac{5}{6}\)
=>3(3x+2)-4(3x+1)=10
=>9x+6-12x-4=10
=>-3x+2=10
=>-3x=8
=>x=-8/3
b: \(\dfrac{x-1}{x+2}-\dfrac{x}{x-2}=\dfrac{9x-10}{4-x^2}\)
=>(x-1)(x-2)-x(x+2)=-9x+10
=>x^2-3x+2-x^2-2x=-9x+10
=>-5x+2=-9x+10
=>x=2(loại)
1. Tìm x
a) 1+2+3+...+x = 210
=> \(\frac{x\left(x+1\right)}{2}=210\)
=> x = 20
b) \(32.3^x=9.3^{10}+5.27^3\)
=>\(32.3^x=9.3^{10}+5.3^9\)(\(27^3=\left(3^3\right)^3=3^9\))
=>\(32.3^x=9.3.3^9+5.3^9\)
=>\(32.3^x=3^9\left(9.3+5\right)\)
=>\(32.3^x=3^9.32\)
=>x = 9
2.
Ta có 2A = 3A - A
=> 2A = \(3\left(1+3+3^2+3^3+....+3^{10}\right)\)\(-\)\(1-3-3^2-3^3-....-3^{10}\)
=> 2A = \(3+3^2+3^3+.....+3^{11}-\)\(1-3-3^2-3^3-...-3^{10}\)
=> 2A = \(3^{11}-1\)
=> 2A+1 = \(3^{11}-1+1\)=\(3^{11}\)
=> n = 11
Ta có : a)1 + 2 + 3 + ... + x = 210
=> \(\frac{x\left(x+1\right)}{2}=210\)
=> x(x + 1) = 420
=> x(x + 1) = 20.21
=> x = 20
Bài 1 :
\(a.\sqrt{x^2-1}\)
\(ĐK:\)
\(x^2-1\ge0\)
\(\Leftrightarrow x^2\ge1\)
\(\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\)
Bài 2 :
\(2\cdot\sqrt{\left(\sqrt{2}-3\right)^2}+\sqrt{48}-5\sqrt{50}\)
\(=2\cdot\left|\sqrt{2}-3\right|+4\sqrt{3}-25\sqrt{2}\)
\(=-2\cdot\left(\sqrt{2}-3\right)+4\sqrt{3}-25\sqrt{2}\)
\(=-2\sqrt{2}-6+4\sqrt{3}-25\sqrt{2}\)
\(=-27\sqrt{2}-6+4\sqrt{3}\)
13 - 12 + 11 + 10 - 9 + 8 - 7 + 5 -4 + 3 + 2 - 1
=13
k nha
nan ni do
13 - 12 + 11 - 10 - 9 + 8 - 7 - 6 + 5 - 4 + 3 + 2 - 1
= ( 13 - 12 + 11 - 10 + 8 ) - ( 9 + 1 ) - ( 6 + 4) + ( 3 + 2 + 5 ) - 7
= 10 - 10 - 10 + 10 - 7
= ( 10 - 10 ) - ( 10 - 10 ) - 7
= 0 - 0 - 7
= - 7
2A=2+22+23+24+...+211
2A—A=(2+22+23+24+....+211)—(1+2+22+23+...+210)
A=211—1
Ta có A = 2A - A
= \(2\left(1+2+2^2+2^3+...+2^{10}\right)\)- \(\left(1+2+2^2+2^3+....+2^{10}\right)\)
=\(2+2^2+2^3+2^4+.....+2^{11}\)\(-1-2-2^2-2^3-...-2^{10}\)
=\(2^{11}-1\)(Các số còn lại đã trừ hết cho nhau)