K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2023

a:

1: \(M\in SB\subset\left(SAB\right)\)

\(M\in\left(MNP\right)\)

Do đó: \(M\in\left(SAB\right)\cap\left(MNP\right)\)(1)

\(N\in AB\subset\left(SAB\right)\)

\(N\in\left(MNP\right)\)

Do đó: \(N\in\left(SAB\right)\cap\left(MNP\right)\left(2\right)\)

Từ (1),(2) suy ra \(\left(SAB\right)\cap\left(MNP\right)=MN\)

2:

\(M\in SB\subset\left(SBC\right);M\in\left(MNP\right)\)

=>\(M\in\left(SBC\right)\cap\left(MNP\right)\)(3)

\(P\in BC\subset\left(SBC\right);P\in\left(MNP\right)\)

=>\(P\in\left(SBC\right)\cap\left(MNP\right)\)(4)

Từ (3),(4) suy ra \(\left(SBC\right)\cap\left(MNP\right)=MP\)

3:

\(N\in AB\subset\left(ABC\right);N\in\left(MNP\right)\)

=>\(N\in\left(ABC\right)\cap\left(MNP\right)\)(5)

\(P\in BC\subset\left(ABC\right);P\in\left(MNP\right)\)

=>\(P\in\left(ABC\right)\cap\left(MNP\right)\left(6\right)\)

Từ (5),(6) suy ra \(\left(ABC\right)\cap\left(MNP\right)=NP\)

b: Xét ΔBAS có BN/BA=BM/BS

nên NM//AS

=>MN//(SAC)

23 tháng 7 2021

2 tháng 7 2017

Chọn A.

Phương pháp : Dựng điểm Q và áp dụng định lý Menenaus.

Cách giải : Gọi I là giao điểm của PN và AC. Suy ra Q là giao điểm của IM và SC.

Áp dụng định lý Menenaus cho tam giác SAC ta có :

17 tháng 1 2018

Chọn đáp án A

Trong mặt phẳng (ABC), gọi E = NP ∩ AC

Khi đó Q chính là giao điểm của SC với EM

Áp dụng định lý Menelaus vào tam giác ABC ta có:

Áp dụng định lý Menelaus vào tam giác SAC ta có:

NV
9 tháng 7 2021

Trong mp (ABCD), nối MN kéo dài lần lượt cắt AB và AD kéo dài tại E và F

Trong mp (SAB), nối PE cắt SA tại G \(\Rightarrow PG=\left(MNP\right)\cap\left(SAB\right)\)

Trong mp (SAD), nối PF cắt SD tại H \(\Rightarrow PH=\left(MNP\right)\cap\left(SAD\right)\)

\(NH=\left(MNP\right)\cap\left(SCD\right)\)

\(GM=\left(MNP\right)\cap\left(SBC\right)\)

13 tháng 8 2021

Sao biết PE cắt SA

3 tháng 11 2019