K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 6 2024

Lời giải:

$A=1.2+2.3+3.4+...+(n-1)n$

$3A=1.2(3-0)+2.3(4-1)+3.4(5-2)+....+(n-1)n[(n+1)-(n-2)]$

$=[1.2.3+2.3.4+3.4.5+...+(n-1)n(n+1)]-[1.2.3+2.3.4+....+(n-2)(n-1)n]$

$=(n-1)n(n+1)$

$\Rightarrow A=\frac{n(n-1)(n+1)}{3}$

20 tháng 10 2020

\(A=1.2+2.3+3.4+.......+\left(n-1\right).n\)

\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+......+\left(n-1\right).n.3\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+.....+\left(n-1\right).n.\left[\left(n+1\right)-\left(n-2\right)\right]\)

\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+......+\left(n-1\right).n\left(n+1\right)-\left(n-1\right).n\left(n-2\right)\)

\(=\left(n-1\right).n.\left(n+1\right)\)

\(\Rightarrow A=\frac{\left(n-1\right).n.\left(n+1\right)}{3}\)( đpcm )

20 tháng 10 2020

lol why lol 

13 tháng 1 2016

 

D = 1.2 + 2.3+ 3.4 +...+ 99.100

=>3D=1.2.3+2.3.3+3.4.3+...+99.100.3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+....+99.100.(101-98)

=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100

=99.100.101-0.1.2

=99.100.101

=999900

=>D=999900:3=333300

 

Dn = 1.2 + 2.3 + 3.4 +...+ n (n +1)

=>3Dn=1.2.3+2.3.3+3.4.3+...+n(n+1).3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]

=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-2.3.4+....+n(n+1)(n+2)-(n-1)n(n+1)

=n.(n+1).(n+2)-0.1.2

=n.(n+1)(n+2)

=>Dn=n.(n+1)(n+2):3

 =>điều cần chứng minh

AH
Akai Haruma
Giáo viên
21 tháng 10 2024

Lời giải:

$A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{n(n+1)}$

$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{(n+1)-n}{n(n+1)}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}$

$=1-\frac{1}{n+1}=\frac{n}{n+1}$
Ta có đpcm.

23 tháng 5 2015

1/A = 1 + 2 + 3 + 4 +.......+ n 
Hay A = n + ... + 4 + 3 + 2 + 1 (Viết ngược lại )
=> A + A = (1 + n) + ... + (n + 1) Có n cặp 
=> 2.A = (1 + n).n 
=> A = (1 + n).n/2 => Đpcm

2/    B=1.2+2.3+3.4.....+(n-1).n
ta có 
3.B=1.2.(3-0)+2.3.(4-1)+3.4.(5 -2)...+ (n-1).n . ((n+1) - (n-2))
3.B=1.2.3+2.3.4+3.4.5+...+ (n-1) . n. (n+1) - 0.1.2 -1.2.3 -2.3.4 -3.4.5 -...(n-1)(n+1) n
3A=n.(n-1).(n+1) 
A=1/3.n.(n-1).(n+1)

23 tháng 5 2015

bài này ko khó đâu các bạn

2 tháng 7 2019

Ko bt đúng ko . 

Đặt A=1.2+2.3+3.4+...+n(n+1)

A=1.2+2.3+3.4+...+n(n+1)

=>3A=(3−0)1.2+(4−1)2.3+...+(n+2−n+1)n(n+1)=>3A=(3−0)1.2+(4−1)2.3+...+(n+2−n+1)n(n+1)

=>3A=1.2.3−0.1.2+2.3.4−1.2.3+...+n(n+1)(n+2)−(n−1)n(n+1)=>3A=1.2.3−0.1.2+2.3.4−1.2.3+...+n(n+1)(n+2)−(n−1)n(n+1)

=>3A=n(n+1)(n+2)=>3A=n(n+1)(n+2)

=>A=n(n+1)(n+2)3=>A=n(n+1)(n+2)3 (đpcm)

11 tháng 4 2017

banhqua

9 tháng 7 2019

giúp mình nhé mình sắp phải nộp rồi.Ai trả lời đúng mình sẽ k cho

16 tháng 4 2019

\(A=1.2+2.3+3.4+...+n\left(n+1\right)\)

\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+...+n\left(n+1\right).3\)

\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n\left(n+1\right).\)\(\left(n+2-n+1\right)\)

\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+n\left(n+1\right)\left(n+2\right)\)\(-\left(n-1\right)n\left(n+1\right)\)

\(\Rightarrow3A=n\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

Vì A là số tự nhiên nên A chia hết cho 3 (đpcm)

2 tháng 5 2015

Câu a: Không hỏi nên không trả lời

Câu b:Gọi d là ƯCLN của n và n+1

Ta có: n chia hết cho d

n+1 chia hết cho d

=>(n+1)-n chia hết cho d

=>1 chia hết cho d

=>d=1

Vậy phân số n/n+1 là phân số tối giản

Câu c: \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

=\(1-\frac{1}{50}\)

Vì: \(1-\frac{1}{50}\)<\(1\)

Vậy:\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)<\(1\)