K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
21 tháng 10 2024

Lời giải:

$A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{n(n+1)}$

$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{(n+1)-n}{n(n+1)}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}$

$=1-\frac{1}{n+1}=\frac{n}{n+1}$
Ta có đpcm.

13 tháng 1 2016

 

D = 1.2 + 2.3+ 3.4 +...+ 99.100

=>3D=1.2.3+2.3.3+3.4.3+...+99.100.3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+....+99.100.(101-98)

=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100

=99.100.101-0.1.2

=99.100.101

=999900

=>D=999900:3=333300

 

Dn = 1.2 + 2.3 + 3.4 +...+ n (n +1)

=>3Dn=1.2.3+2.3.3+3.4.3+...+n(n+1).3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]

=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-2.3.4+....+n(n+1)(n+2)-(n-1)n(n+1)

=n.(n+1).(n+2)-0.1.2

=n.(n+1)(n+2)

=>Dn=n.(n+1)(n+2):3

 =>điều cần chứng minh

20 tháng 10 2020

\(A=1.2+2.3+3.4+.......+\left(n-1\right).n\)

\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+......+\left(n-1\right).n.3\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+.....+\left(n-1\right).n.\left[\left(n+1\right)-\left(n-2\right)\right]\)

\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+......+\left(n-1\right).n\left(n+1\right)-\left(n-1\right).n\left(n-2\right)\)

\(=\left(n-1\right).n.\left(n+1\right)\)

\(\Rightarrow A=\frac{\left(n-1\right).n.\left(n+1\right)}{3}\)( đpcm )

20 tháng 10 2020

lol why lol 

AH
Akai Haruma
Giáo viên
30 tháng 6 2024

Lời giải:

$A=1.2+2.3+3.4+...+(n-1)n$

$3A=1.2(3-0)+2.3(4-1)+3.4(5-2)+....+(n-1)n[(n+1)-(n-2)]$

$=[1.2.3+2.3.4+3.4.5+...+(n-1)n(n+1)]-[1.2.3+2.3.4+....+(n-2)(n-1)n]$

$=(n-1)n(n+1)$

$\Rightarrow A=\frac{n(n-1)(n+1)}{3}$

2 tháng 5 2015

Câu a: Không hỏi nên không trả lời

Câu b:Gọi d là ƯCLN của n và n+1

Ta có: n chia hết cho d

n+1 chia hết cho d

=>(n+1)-n chia hết cho d

=>1 chia hết cho d

=>d=1

Vậy phân số n/n+1 là phân số tối giản

Câu c: \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

=\(1-\frac{1}{50}\)

Vì: \(1-\frac{1}{50}\)<\(1\)

Vậy:\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)<\(1\)


 

23 tháng 5 2015

1/A = 1 + 2 + 3 + 4 +.......+ n 
Hay A = n + ... + 4 + 3 + 2 + 1 (Viết ngược lại )
=> A + A = (1 + n) + ... + (n + 1) Có n cặp 
=> 2.A = (1 + n).n 
=> A = (1 + n).n/2 => Đpcm

2/    B=1.2+2.3+3.4.....+(n-1).n
ta có 
3.B=1.2.(3-0)+2.3.(4-1)+3.4.(5 -2)...+ (n-1).n . ((n+1) - (n-2))
3.B=1.2.3+2.3.4+3.4.5+...+ (n-1) . n. (n+1) - 0.1.2 -1.2.3 -2.3.4 -3.4.5 -...(n-1)(n+1) n
3A=n.(n-1).(n+1) 
A=1/3.n.(n-1).(n+1)

23 tháng 5 2015

bài này ko khó đâu các bạn

22 tháng 9 2020

tbc của 3 số là 96. tổng của stn và sth là 148. tbc của số thứ 1 và số thứ 3 là 75. tìm ba số

22 tháng 9 2020

ai biết làm ko

27 tháng 4 2021

Ta có : k(k+1)(k+2)-(k-1)(k+1)k

         =k(k+1).[(k+2)-(k-1)]

         =3k(k+1)

áp dụng  3(1+2)=1.2.3-0.1.2

             =>3(2.3)=2.3.4-1.2.3

             =>3(3.4)=3.4.5-2.3.4

            .....................................

              3n(n+1)=n(n+1)(n+2)-(n-1)n(n+1)

Cộng lại ta có   3.S=n(n+1)(n+2)=>S=n(n+1)(n+2)/3

CHÚC BẠN HỌC TỐT NHA !!!

k(k+1)(k+2)-(k-1)k(k+1)=k(k+1)(k+2-k+1)=3.k.(k+1)

S=1.2+2.3+3.4+...+n(n+1)

=>3S=1.2.3+2.3.3+3.4.3+...+n(n+1)3

=1.2.3+2.3.(4-1)+3.4(5-2)+...+n.(n+1)[(n+2)-(n-1)]

=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+n(n+1)(n+2)-(n-1)n(n+1)

=n(n+1)(n+2)

\(\Rightarrow S=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

13 tháng 7 2015

m tưởng tao thik đăng à..............................................