Homie ơi, giúp mình với:
1) So sánh:
a) -2016/2017 và -2015/2016
b) 2017/-2016 và 2016/-2015
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 2015/2016=1-1/2016
2016/2017=1-1/2017
mà 1/2016>1/2017
nên 2015/2016<2016/2017
=>-2015/2016>-2016/2017
b: 2017/2016=1+1/2016
2016/2015=1+1/2015
mà 1/2016<1/2015
nên 2017/2016<2016/2015
=>-2017/2016>-2016/2015
Ta có:2015/2016>2015/2016+2017+2018
2016/2017>2016/2016+2017+2018
2017/2018>2017/2016+2017+2018-Mình áp dụng so sánh phân số cùng tử đấy.
Suy ra2015/2016+2016/2017+2017/2018>(2015+2016+2017)/(2016+2017+2018)=B
trả lời
2016/2015 > 2017/2016
nhớ k cho mình nha
học tốt
TA có :\(\frac{2015.2016-1}{2015.2016}=\frac{2015.2016}{2015.2016}-\frac{1}{2015.2016}=1-\frac{1}{2015.2016}\)
Ta có:\(\frac{2016.2017-1}{2016.2017}=\frac{2016.2017}{2016.2017}-\frac{1}{2016.2017}=1-\frac{1}{2016.2017}\)
Vì \(2015.2016< 2016.2017\)
\(\Rightarrow\frac{1}{2015.2016}>\frac{1}{2016.2017}\)
\(\Rightarrow1-\frac{1}{2015.2016}< 1-\frac{1}{2016.2017}\)
\(\Rightarrow\frac{2015.2016-1}{2015.2016}< \frac{2016.2017-1}{2016.2017}\)
Vậy \(\frac{2015.2016-1}{2015.2016}< \frac{2016.2017-1}{2016.2017}\)
Ta có:\(Q=\frac{2015+2016+2017}{2016+2017+2018}=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Vì \(\hept{\begin{cases}\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\\\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\\\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\end{cases}}\)
\(\Rightarrow\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
\(\Rightarrow P>Q\)
Vậy P > Q
a)\(\frac{2016}{2017}< 1;\frac{2015}{2016}< 1\)
b)\(\frac{2017}{2016}>1;\frac{2016}{2015}>1\)
=> \(\frac{2016}{2017}\)và
\(\frac{2016}{2017}< 1;\frac{2016}{2015}< 1\)
\(\frac{2017}{2016}>1;\frac{2016}{2015}>1\)
=> \(\frac{2016}{2017}\)và \(\frac{2015}{2016}\)< \(\frac{2017}{2016}\)và \(\frac{2016}{2015}\)