Cho
\(B=\frac{2x+2}{\sqrt{x}}+\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\)
a, Rút gọn B
b,So sánh B với 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐKXĐ:x\ge0;x\ne1;0\)
\(A=\frac{2x+2}{\sqrt{x}}+\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(A=\frac{2x+2}{\sqrt{x}}+\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}\)
\(A=\frac{2x+2+x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\)
\(A=\frac{2x+2+2\sqrt{x}}{\sqrt{x}}\)
\(A=2\sqrt{x}+\frac{2}{\sqrt{x}}+2\)
a/d bđt cauchy
\(2\sqrt{x}+\frac{2}{\sqrt{x}}\ge2\sqrt{2.2}=2.2=4\)
\(A\ge4+2=6\)
\(< =>A>5\)
dấu "=" xảy ra khi x=1
a. ĐK \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
\(B=\frac{2x+2}{\sqrt{x}}+\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{2x+2}{\sqrt{x}}+\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}\)
\(=\frac{2x+2+x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}=\frac{2x+2\sqrt{x}+2}{\sqrt{x}}\)
b. Ta có \(B-5=\frac{2x+2\sqrt{x}+2}{\sqrt{x}}-5=\frac{2x-3\sqrt{x}+2}{\sqrt{x}}=\frac{2\left(x-2.\sqrt{x}.\frac{3}{4}+\frac{9}{16}\right)-\frac{9}{8}+2}{\sqrt{x}}\)
\(=\frac{2\left(\sqrt{x}-\frac{3}{4}\right)^2+\frac{7}{8}}{\sqrt{x}}\)
Ta thấy \(\hept{\begin{cases}2\left(\sqrt{x}-\frac{3}{4}\right)^2+\frac{7}{8}>0\\\sqrt{x}>0\forall x>0\end{cases}\Rightarrow B-5>0\Rightarrow B>5}\)
Vậy \(B>5\)