K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2017

a/ \(B=\left(\frac{1}{\sqrt{x}+2}+\frac{7}{x-4}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}-2}-1\right)\)

=> \(B=\left(\frac{1}{\sqrt{x}+2}+\frac{7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\frac{\sqrt{x}-1-\sqrt{x}+2}{\sqrt{x}-2}\right)\)

=> \(B=\frac{\sqrt{x}+5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}:\frac{1}{\sqrt{x}-2}\)

=> \(B=\frac{\sqrt{x}+5}{\sqrt{x}+2}\)

b/ B>2  <=> \(\frac{\sqrt{x}+5}{\sqrt{x}+2}>2\) <=> \(\sqrt{x}+5>2\sqrt{x}+4\)

<=> \(1>\sqrt{x}\)=> \(-1\le x\le1\)

c/ \(B=\frac{\sqrt{x}+5}{\sqrt{x}+2}=\frac{\sqrt{x}+2+3}{\sqrt{x}+2}=1+\frac{3}{\sqrt{x}+2}\)

Để Bmax thì \(\sqrt{x}+2\) đạt giá trị nhỏ nhất . Do \(\sqrt{x}+2\ge2\)=> Đạt nhỏ nhất khi x=0

Khí đó giá trị lớn nhất của B là: \(1+\frac{3}{2}=\frac{5}{2}\)Đạt được khi x=0

a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)

b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)

\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)

c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)

\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)

\(=\dfrac{3}{\sqrt{x}-2}\)

6 tháng 10 2018

Ai giải giúp mình bài 1 với bài 4 trước đi

29 tháng 7 2020

\(B=\left(\frac{1}{\sqrt{x}-2}-\frac{2}{\sqrt{x}+2}+\frac{x}{x\sqrt{x}-4\sqrt{x}}\right):\left(\frac{6-x}{\sqrt{x}+2}+2+\sqrt{x}\right)\)

\(B=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)}\right):\left(\frac{6-x+2\left(\sqrt{x}+2\right)+\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}+2}\right)\)

\(B=\left(\frac{\sqrt{x}+2-2\sqrt{x}+4+\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right):\left(\frac{6-x+2\sqrt{x}+4+x+2\sqrt{x}}{\sqrt{x}+2}\right)\)

\(B=\frac{6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+2}{10+4\sqrt{x}}\)

\(B=\frac{6}{\sqrt{x}-2}\cdot\frac{1}{2\left(5+2\sqrt{x}\right)}\)

B = \(\frac{3}{\left(\sqrt{x}-2\right)\left(5+2\sqrt{x}\right)}\)