Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 3cm, AC = 4cm. a) Tính độ dài các đoạn thẳng AH, CH. b) Vẽ đường thẳng d vuông góc với AC tại C, cắt AH tại D. Kẻ BE vuông góc với CD tại E. Tính góc DAC? Diện tích tam giác BCD? Cho tam giác ABC vuông tại A, đường cao AH . Biết AB =3cm,4C=4cm. a) Tinh độ dài các đoạn thẳng AHẠCH . b) Vẽ đường thẳng d vuông góc với AC tại C, ả cắt AH tại D.Kẻ BE vuông góc với CD tại E. Tỉnh góc D4C ? Diện tích tam giác BCD? c) Chứng minh: 4C* = ABCD. d) Từ H kẻ đường thẳng vuông góc với AC tại I cắt BD tại K. So sánh HI và HK?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tứ giác ARHD là hình chữ nhật vì: A ^ = E ^ = D ^ = 90 ∘ nên DE = AH.
Xét ∆ ABC vuông tại A có A H 2 = HB.HC = 4.9 = 36 ⇔ AH = 6
Nên DE = 6cm
Đáp án cần chọn là : D
a: BC=căn 6^2+8^2=10cm
AH=6*8/10=4,8cm
c:
Xét tứ giác ANHM có
góc ANH=góc AMH=góc MAN=90 độ
=>ANHM là hình chữ nhật
AD vuông góc MN
=>góc DAC+góc ANM=90 độ
=>góc DAC+góc AHM=90 độ
=>góc DAC+góc ABC=90 độ
=>góc DAC=góc DCA
=>DA=DC
góc DAC+góc DAB=90 độ
góc DCA+góc DBA=90 độ
mà góc DAC=góc DCA
nên góc DAB=góc DBA
=>DA=DB
=>DB=DC
=>D là trung điểm của BC
a: BC=căn 3^2+4^2=5cm
HB=AB^2/BC=1,8cm
HC=5-1,8=3,2cm
AH=3*4/5=2,4cm
b:
1: ΔAHB vuông tại H có HE là đường cao
nên AE*EB=EH^2
2: ΔHAC vuông tại H có HF là đường cao
nên AF*FC=HF^2
=>AE*EB+AF*FC=HE^2+HF^2=EF^2=AH^2