A=\(\dfrac{1}{1\cdot4}\)+\(\dfrac{1}{4\cdot7}\)+\(\dfrac{1}{7\cdot11}\)+.....+\(\dfrac{1}{298\cdot301}\)
các bạn giải hộ mình và chỉ giảng chi tiết cho mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}\\ =1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\\ =1-\dfrac{1}{11}=\dfrac{10}{11}\)
\(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}\\ =1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\\ =1-\dfrac{1}{11}\\ =\dfrac{10}{11}\)
\(C=\dfrac{-5}{7}+\dfrac{-2}{7}+\dfrac{3}{4}+\dfrac{1}{4}+\dfrac{-1}{5}=-1+1-\dfrac{1}{5}=\dfrac{-1}{5}\)
\(\dfrac{5}{1\cdot4}+\dfrac{5}{4\cdot7}+\dfrac{5}{7\cdot11}+...+\dfrac{5}{\left(3x+1\right)\cdot\left(3x+4\right)}\\ =\dfrac{5}{3}\cdot\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot11}+...+\dfrac{3}{\left(3x+1\right)\cdot\left(3x+4\right)}\right)\\ =\dfrac{5}{3}\cdot\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{3x+1}-\dfrac{1}{3x+4}\right)\\ =\dfrac{5}{3}\cdot\left(1-\dfrac{1}{3x+4}\right)\\ =\dfrac{5}{3}-\dfrac{5}{9x+12}\)
a)\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)
\(=\frac{1}{2}.\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+\frac{11-9}{9.11}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{11}\right)\)
\(\frac{10}{22}\)
\(\dfrac{-1}{12},\dfrac{-3}{4},\dfrac{2}{9},\dfrac{7}{6}\)
`1/5 . 4/7 + 3/7 . 1/5 -1/5`
`=1/5 . 4/7 + 3/7 . 1/5 -1/5 . 1`
`=1/5 . ( 4/7+3/7-1)`
`=1/5 . ( 7/7-1)`
`= 1/5 . 0`
`=0`
\(\dfrac{1}{5}\times\dfrac{4}{7}+\dfrac{3}{7}\times\dfrac{1}{5}-\dfrac{1}{5}=\dfrac{1}{5}\times\left(\dfrac{4}{7}+\dfrac{3}{7}-1\right)=\dfrac{1}{5}\times0=0\)
Lời giải:
$S=\frac{1}{7^2}+\frac{2}{7^3}+\frac{3}{7^4}+...+\frac{69}{7^{70}}$
$7S=\frac{1}{7}+\frac{2}{7^2}+\frac{3}{7^3}+...+\frac{69}{7^{69}}$
$6S=7S-S=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+....+\frac{1}{7^{69}}-\frac{69}{7^{70}}$
$42S=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{68}}-\frac{69}{7^{69}}$
$\Rightarrow 42S-6S=(1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{68}}-\frac{69}{7^{69}})-(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+....+\frac{1}{7^{69}}-\frac{69}{7^{70}})$
$\Rightarrow 36S=1-\frac{69}{7^{69}}-\frac{1}{7^{69}}+\frac{69}{7^{70}}$
Hay $36S=1-\frac{69.7-7-69}{7^{70}}=1-\frac{407}{7^{70}}$
$\Rightarrow S=\frac{1}{36}(1-\frac{407}{7^{70}})$
A= 1/3 + 1/3^2 + ... + 1/3^8
3A= 3. (1/3+ 1/3^2+ ... + 1/3^8)
3A=1+ 1/3 + 1/3^2+ ... +1/3^7
=> 3A - A= (1 + 1/3 + 1/3^2 + ... + 1/3^7) - (1/3 + 1/3^2+ ... + 1/3^8)
=> 2A= 1 - 1/ 3^8
2A= 6560/6561
A= 6560/6561 : 2
A= 3280/6561
Áp dụng dãy phân số có quy luật nha
3A=3/1X4 + 3/4X7 + ...+3/298X301
3A=1/1-1/4+1/4-1/7+...+1/298-1/301
3A=1/1+(-1/4+1/4)+(-1/7+1/7)+...+(-1/298+1/298)-1/301
3A=1/1+0+0+0+0+0+...+0-1/301
3A=1/1-1/301
3A=301/301-1/301
3A=300/301
A=300/301:3
A=300/301X1/3
A=300/903
A=100/301
QUA CHI TIET
TICK VOI