x:3=y:5 và 2x-y=11 giúp mik vs ak:,<
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x+3)(y+5)=1
vì x nguyên y nguyên nên x+3 và y+5 nguyên
theo bài ra thì x+3 và y+5 phải là ước của 1
Ư(1) = {-1; 1)
+) nếu x+3 = 1 thì y +5 = 1
=> x = -2 và y = -4
+) nếu x+3 = -1 thì y +5 = -1
=> x = -4 và y = -6
b) (2x-5)(y-6)=17
tương tự câu a
theo bài ra thì 2x-5 và y-6 phải là ước của 17
Ư(17) = {-1; 1; -17, 17)
+) nếu 2x - 5 = -1 thì y +5 = -17
=> 2x = 4 y = -22
=> x = 2
+) nếu 2x - 5 = 1 thì y +5 = 17
=> 2x = -6 y = 12
=> x = -3
+) nếu 2x - 5 = -17 thì y +5 = -1
......
+) nếu 2x - 5 = 17 thì y +5 = 1
...........
bạn giải tiếp ra và kết luận nhé
a) ta có: x+3=1 suy ra x=-2
y+5=1 suy ra y=-4
b) ta có: 2x-5=17 suy ra 2x=22
x=11
y-6=17 suy ra y= 23
\(\frac{2x-y}{2}=\frac{x+2y}{3}\)
\(\Leftrightarrow3\left(2x-y\right)=2\left(x+2y\right)\)
\(\Leftrightarrow6x-3y=2x+4y\)
\(\Leftrightarrow6x-2x=4y+3y\)
\(\Leftrightarrow4x=7y\)
\(\Leftrightarrow\frac{x}{7}=\frac{y}{4}\)
Vậy tỉ số giữa x và y là \(\frac{x}{7}=\frac{y}{4}\)
\(\frac{2x-y}{2}=\frac{x+2y}{3}\)
\(\Rightarrow3\left(2x-y\right)=2\left(x+2y\right)\)
\(\Rightarrow6x-3y=2x+4y\)
\(\Rightarrow6x-2x=3y+4y\)
\(\Rightarrow4x=7y\)
\(\Rightarrow\frac{x}{y}=\frac{4}{7}\)
Vậy tỉ số giữa x và y là \(\frac{4}{7}\)
_Chúc bạn học tốt_
x : y : z = 3 : 4 : 5
=>\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
Ta có:\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{2x^2}{18}=\dfrac{2y^2}{32}=\dfrac{3z^2}{75}\)
ADTCDTSBN:
\(\dfrac{2x^2}{18}=\dfrac{2y^2}{32}=\dfrac{3z^2}{75}=\dfrac{2x^2+2y^2-3z^2}{18+32+75}=\dfrac{-4}{5}\)
\(\dfrac{x}{3}=\dfrac{-4}{5}\Rightarrow x=\dfrac{-12}{5}\)
\(\dfrac{y}{4}=\dfrac{-4}{5}\Rightarrow y=\dfrac{-16}{5}\)
\(\dfrac{z}{5}=\dfrac{-4}{5}\Rightarrow z=-4\)
\(x:y:z=3:4:5=>\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
\(=>x=\dfrac{3y}{4},z=\dfrac{5y}{4}\) thay x,z vào \(2x^2+2y^2-3z^2=-100\)
\(< =>2\left(\dfrac{3y}{4}\right)^2+2y^2-3\left(\dfrac{5y}{4}\right)^2=-100\)
\(=>y=\pm8\)
* với y=8 \(=>x=\dfrac{3.8}{4}=6,z=\dfrac{5.8}{4}=10\)
* với y=-8 \(=>x=-6,z=-10\)
Lời giải:
$x,y$ tự nhiên
$(2x+1)(y^2-5)=12$.
$\Rightarrow 2x+1$ là ước của $12$
$x\in\mathbb{N}$ kéo theo $2x+1$ là số tự nhiên lẻ nên $2x+1$ là ước tự nhiên lẻ của $12$
$\Rightarrow 2x+1\in\left\{1; 3\right\}$
Nếu $2x+1=1$:
$y^2-5=\frac{12}{1}=12\Rightarrow y^2=17$ (không thỏa mãn do $y$ tự nhiên)
Nếu $2x+1=3$
$\Rightarrow x=1$
$y^2-5=\frac{12}{2x+1}=4\Rightarrow y^2=9=3^2=(-3)^2$
Do $y$ tự nhiên nên $y=3$
Vậy $(x,y)=(1,3)$
Chúc cậu học tốt nhee
Ta có \(\dfrac{x}{3}\) = \(\dfrac{y}{5}\) = \(\dfrac{2x-y}{3.2-5}\) = \(\dfrac{11}{1}\)
=> x = 11 . 3 = 33; y = 11 . 5 = 55