K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2023

\(B=\dfrac{2010}{4x+20\sqrt{x}+30}\)

\(B=\dfrac{2010}{\left(2\sqrt{x}\right)^2+2\cdot2\sqrt{x}\cdot5+25+5}\)

\(B=\dfrac{2010}{\left(2\sqrt{x}+5\right)^2+5}\)

Ta có: \(\left(2\sqrt{x}+5\right)^2+5\ge5\)

\(\Rightarrow B=\dfrac{2010}{\left(2\sqrt{x}+5\right)^2+5}\le\dfrac{2010}{5}=402\)

Vậy: \(B_{min}=402\)

1 tháng 10 2019

câu 1 sai đề

1 tháng 10 2019

\(\sqrt{x}+1chứkophải\sqrt{x+1}\)

AH
Akai Haruma
Giáo viên
22 tháng 6 2021

Lời giải:

a. ĐKXĐ: $x\geq 4$

PT $\Leftrightarrow \sqrt{(x-4)+4\sqrt{x-4}+4}=2$

$\Leftrightarrow \sqrt{(\sqrt{x-4}+2)^2}=2$

$\Leftrightarrow |\sqrt{x-4}+2|=2$

$\Leftrightarrow  \sqrt{x-4}+2=2$

$\Leftrightarrow \sqrt{x-4}=0$

$\Leftrightarrow x=4$ (tm)

b. ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow \sqrt{(2x-1)^2}=\sqrt{(x-3)^2}$

$\Leftrightarrow |2x-1|=|x-3|$

\(\Rightarrow \left[\begin{matrix} 2x-1=x-3\\ 2x-1=3-x\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-2\\ x=\frac{4}{3}\end{matrix}\right.\)

c.

PT \(\Rightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 2x^2-2x+1=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ 2x^2-2x=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ 2x(x-1)=0\end{matrix}\right.\Rightarrow x=1\)

a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow x+5=4\)

hay x=-1

b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) \(\sqrt {11{x^2} - 14x - 12}  = \sqrt {3{x^2} + 4x - 7} \)

\(\begin{array}{l} \Rightarrow 11{x^2} - 14x - 12 = 3{x^2} + 4x - 7\\ \Rightarrow 8{x^2} - 18x - 5 = 0\end{array}\)

\( \Rightarrow x =  - \frac{1}{4}\) và \(x = \frac{5}{2}\)

Thay nghiệm vừa tìm được vào phương trình \(\sqrt {11{x^2} - 14x - 12}  = \sqrt {3{x^2} + 4x - 7} \) ta thấy chỉ có nghiệm \(x = \frac{5}{2}\) thảo mãn phương trình

Vậy nhiệm của phương trình đã cho là \(x = \frac{5}{2}\)

b) \(\sqrt {{x^2} + x - 42}  = \sqrt {2x - 30} \)

\(\begin{array}{l} \Rightarrow {x^2} + x - 42 = 2x - 3\\ \Rightarrow {x^2} - x - 12 = 0\end{array}\)

\( \Rightarrow x =  - 3\) và \(x = 4\)

Thay vào phương trình \(\sqrt {{x^2} + x - 42}  = \sqrt {2x - 30} \)  ta thấy  không có nghiệm nào thỏa mãn

Vậy phương trình đã cho vô nghiệm

c) \(2\sqrt {{x^2} - x - 1}  = \sqrt {{x^2} + 2x + 5} \)

\(\begin{array}{l} \Rightarrow 4.\left( {{x^2} - x - 1} \right) = {x^2} + 2x + 5\\ \Rightarrow 3{x^2} - 6x - 9 = 0\end{array}\)

\( \Rightarrow x =  - 1\) và \(x = 3\)

Thay hai nghiệm trên vào phương trình \(2\sqrt {{x^2} - x - 1}  = \sqrt {{x^2} + 2x + 5} \) ta thấy cả hai nghiệm đếu thỏa mãn phương trình

Vậy nghiệm của phương trình \(2\sqrt {{x^2} - x - 1}  = \sqrt {{x^2} + 2x + 5} \) là \(x =  - 1\) và \(x = 3\)

d) \(3\sqrt {{x^2} + x - 1}  - \sqrt {7{x^2} + 2x - 5}  = 0\)

\(\begin{array}{l} \Rightarrow 3\sqrt {{x^2} + x - 1}  = \sqrt {7{x^2} + 2x - 5} \\ \Rightarrow 9.\left( {{x^2} + x - 1} \right) = 7{x^2} + 2x - 5\\ \Rightarrow 2{x^2} + 7x - 4 = 0\end{array}\)

\( \Rightarrow x =  - 4\) và \(x = \frac{1}{2}\)

Thay hai nghiệm trên vào phương trình \(3\sqrt {{x^2} + x - 1}  - \sqrt {7{x^2} + 2x - 5}  = 0\) ta thấy chỉ có nghiệm \(x =  - 4\) thỏa mãn phương trình

Vậy nghiệm của phương trình trên là \(x =  - 4\)

8 tháng 7 2023

a) \(\sqrt{9a^4}=\sqrt{\left(3a^2\right)^2}=\left|3a^2\right|=3a^2\)

b) \(2\sqrt{a^2}-5a=2\left|a\right|-5a=-2a-5a=-7a\)

c) \(\sqrt{16\left(1+4x+4x^2\right)}=\sqrt{\left[4\left(1+2x\right)\right]^2}=\left|4\left(1+2x\right)\right|=4\left(1+2x\right)\)