Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{4a^2}=2\left|a\right|=-2a\) ( do a<0)
b) \(\sqrt{4x^2-12x+9}=\sqrt{\left(2x-3\right)^2}=\left|2x-3\right|=3-2x\)(do \(x< \dfrac{3}{2}\Leftrightarrow2x-3< 0\))
giải giúp mình bài này ới ạ mình đng cần gấp
Cho biểu thức
c=(căng x-2/căng x+2+căng x+2/căng x-2)nhân căng x+2/2 - 4 căng x/căng x-2
a)
\(P=\frac{\sqrt{a}}{\sqrt{a}+3}+\frac{2\sqrt{a}}{\sqrt{a}-3}-\frac{3a+9}{a-9}\)
\(P=\frac{\sqrt{a}}{\sqrt{a}+3}+\frac{2\sqrt{a}}{\sqrt{a}-3}-\frac{3a+9}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(P=\frac{\sqrt{a}\left(\sqrt{a}-3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}+\frac{\sqrt{a}\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}-\frac{3a+9}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(P=\frac{a-3\sqrt{a}+3+3\sqrt{a}-3a-9}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(P=\frac{-2a-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(P=\frac{-2a-3}{a-9}\)
b) Để \(P=\frac{1}{3}\Rightarrow\frac{-2a-3}{a-9}=\frac{1}{3}\)
\(\Rightarrow3\left(-2a-3\right)=a-9\)
\(\Rightarrow-6a-9=a-9\)
\(\Rightarrow-6a-a=-9+9\)
\(\Rightarrow-7a=0\left(L\right)\)
Vậy ko có gt của a để P=1/3 ( mk ko chắc.....)
a) \(M=\sqrt{4\left(x-1\right)}-\sqrt{9\left(x-1\right)}-\sqrt{16\left(x-1\right)}\)
\(=2\sqrt{x-1}-3\sqrt{x-1}-4\sqrt{x-1}=-5\sqrt{x-1}\)
b) \(N=\sqrt{25\left(y+4\right)}+\sqrt{36\left(y+4\right)}-2\sqrt{81\left(y+4\right)}\)
\(=5\sqrt{y+4}+6\sqrt{y+4}-18\sqrt{y+4}=-7\sqrt{y+4}\)
c) \(P=\sqrt{y-2}-3\sqrt{64\left(y-2\right)}+4\sqrt{49\left(y-2\right)}\)
\(=\sqrt{y-2}-24\sqrt{y-2}+28\sqrt{y-2}=5\sqrt{y-2}\)
a) \(M=\sqrt{4\left(x-1\right)}-\sqrt{9\left(x-1\right)}-\sqrt{16\left(x-1\right)}.\)
\(M=\sqrt{4\left(x-1\right)}-\sqrt{9\left(x-1\right)}-\sqrt{16\left(x-1\right)}\)
\(=2\sqrt{x-1}-3\sqrt{x-1}-4\sqrt{x-1}\)
\(=-5\sqrt{x-1}\)
b) \(N=\sqrt{25\left(y+4\right)}+\sqrt{36\left(y+4\right)}-2\sqrt{81\left(y+4\right)}\)
\(N=\sqrt{25\left(y+4\right)}+\sqrt{36\left(y+4\right)}-2\sqrt{81\left(y+4\right)}\)
\(=5\sqrt{y+4}+6\sqrt{y+4}\)
\(=-7\sqrt{y+4}\)
c) \(P=\sqrt{\left(y-2\right)}-3\sqrt{64\left(y-2\right)}+4\sqrt{49\left(y-2\right)}\)
\(P=\sqrt{\left(y-2\right)}-3\sqrt{64\left(y-2\right)}+4\sqrt{49\left(y-2\right)}\)
\(=\sqrt{y-2}-24\sqrt{y-2}+28\sqrt{y-2}\)
\(=5\sqrt{y-2}\)
B4
a) \(\frac{9}{\sqrt{3}}=\frac{9\cdot\sqrt{3}}{\sqrt{3}\cdot\sqrt{3}}=\frac{9\sqrt{3}}{3}=3\sqrt{3}\)
b)\(\frac{3}{\sqrt{5}-\sqrt{2}}=\frac{3\left(\sqrt{5}+\sqrt{2}\right)}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}=\frac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}=\sqrt{5}+\sqrt{2}\)
c)\(\frac{\sqrt{2}+1}{\sqrt{2}-1}=\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\frac{\left(\sqrt{2}+1\right)^2}{1}=\left(\sqrt{2}+1\right)^2\)
d)\(\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=\frac{14}{1}=14\)
B3
a)\(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\) \(đk:x\ge1\)
\(\frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\sqrt{x-1}\cdot\left(\frac{1}{2}-\frac{9}{2}+3\right)=-17\)
\(\sqrt{x-1}\cdot\left(-1\right)=-17\)
\(\sqrt{x-1}=17\)
\(\left[{}\begin{matrix}x-1=289\left(tm\right)\\x-1=-289\left(ktm\right)\end{matrix}\right.\)
\(x=290\left(tm\right)\)
Bài 1:
Ta có:
\(\left(a-b+c\right)^3=a^3-b^3+c^3-3a^2b+3a^2c+3ab^2+3b^2c+3ac^2-3bc^2-6abc\)
\(\Rightarrow\left(\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}\right)^3=\frac{1}{9}-\frac{2}{9}+\frac{4}{9}-\frac{1}{3}.\sqrt[3]{2}+\frac{1}{3}.\sqrt[3]{4}+\frac{1}{3}.\sqrt[3]{4}+\frac{2}{3}.\sqrt[3]{2}\)
\(+\frac{2}{3}.\sqrt[3]{2}-\frac{2}{3}.\sqrt[3]{4}-\frac{4}{3}=\sqrt[3]{2}-1\)
\(\Rightarrow\sqrt[3]{\sqrt[3]{2}-1}=\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}\)
a/ \(A=\sqrt{\left(a-4\right)^2}-3a=\left|a-4\right|-3a\)
+) với a<4: A = 4-a-3a=4-4a
+)với a≥4: A = a-4-3a=-2a - 4
Với a = -3 <4 => A = 4 - 4 . (-3) = 16
b/ \(B=\sqrt{\left(1-2x\right)^2}-2x=\left|1-2x\right|-2x\)
+) nếu x \(\le\frac{1}{2}\) :
\(B=1-2x-2x=-4x+1\)
+) nếu \(x>\frac{1}{2}:B=2x-1-2x=-1\)
với \(x=-\frac{3}{2}< \frac{1}{2}\Rightarrow B=-4\cdot\left(-\frac{3}{2}\right)+1=7\)
c/đk: \(x\ne\pm4\)
\(C=\frac{\sqrt{\left(2x-1\right)^2}}{\left(x-4\right)\left(x+4\right)}\cdot\left(x-4\right)^2=\frac{\left|2x-1\right|\cdot\left(x-4\right)}{x+4}\)
+) nếu \(x\ge\frac{1}{2}:B=\frac{\left(2x-1\right)\left(x-4\right)}{x+4}\)
+) nếu \(x< \frac{1}{2}:B=\frac{-\left(2x-1\right)\left(x-4\right)}{x+4}\)
Với \(x=7\left(>\frac{1}{2}\right):B=\frac{\left(2\cdot7-1\right)\cdot\left(7-4\right)}{7+4}=\frac{39}{11}\)
Bài 1:
\(a,ĐK:2+8x\ge0\Leftrightarrow x\ge-\dfrac{1}{4}\\ b,ĐK:-\dfrac{1}{5}x+9\ge0\Leftrightarrow-\dfrac{1}{5}x\ge-9\Leftrightarrow x\le45\\ c,ĐK:11-7x\ge0\Leftrightarrow x\le\dfrac{11}{7}\)
Bài 2:
\(a,=\sqrt{144a^2}-2a=12\left|a\right|-2a=12a-2a=10\\ b,=\sqrt{6}-6\sqrt{6}-\sqrt{6}=-6\sqrt{6}\)
Bài 3:
\(a,\Leftrightarrow\left|2x+3\right|=3\Leftrightarrow\left[{}\begin{matrix}2x+3=3\\2x+3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\\ b,ĐK:x\ge2\\ PT\Leftrightarrow2\sqrt{x-2}-4\sqrt{x-2}+3\sqrt{x-2}=4\\ \Leftrightarrow\sqrt{x-2}=4\\ \Leftrightarrow x-2=16\\ \Leftrightarrow x=18\left(tm\right)\)
a) \(\sqrt{9a^4}=\sqrt{\left(3a^2\right)^2}=\left|3a^2\right|=3a^2\)
b) \(2\sqrt{a^2}-5a=2\left|a\right|-5a=-2a-5a=-7a\)
c) \(\sqrt{16\left(1+4x+4x^2\right)}=\sqrt{\left[4\left(1+2x\right)\right]^2}=\left|4\left(1+2x\right)\right|=4\left(1+2x\right)\)