Phân tích đa thức thành nhân tử :
a ( b - c )3 + b( c - a )3 + c ( a - b )3
Chú ý dùng PP tách hạng tử ở giữa thành nhiều hạng tử
( Giúp mk với mk cần gấp giải chi tiết nha )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 + 5x + 6
= x2 + 2x + 3x + 6
= (x2 + 2x) + (3x + 6)
= x(x + 2) + 3 (x + 2)
= (x + 2) (x + 3)
b) x2 + 6x + 8
= x2 + 2x + 4x + 8
= (x2 + 2x) + (4x + 8)
= x(x + 2) + 4(x + 2)
= (x + 2)(x + 4)
c) x2 - 5x - 14
= x2 + 2x - 7x - 14
= (x2 + 2x) - (7x + 14)
= x(x + 2) - 7(x + 2)
= (x + 2)(x - 7)
d) x2 - 9x + 18
= x2 - 3x - 6x + 18
= (x2 - 3x) - (6x + 18)
= x(x - 3) - 6 (x - 3)
= (x - 3)(x - 6)
e) x2 - 7x + 12
= x2 -3x - 4x + 12
= (x2 - 3x) - (4x + 12)
= x(x - 3) - 4(x - 3)
= (x - 3)(x - 4)
f) 3x2 + 9x - 30
= 3(x2 + 3x - 10)
= 3\(\left[\left(x^2+5x-2x-10\right)\right]\)
= 3\(\left[\left(x^2+5x\right)-\left(2x-10\right)\right]\)
= 3\(\left[x\left(x+5\right)-2\left(x+5\right)\right]\)
= 3(x + 5)(x - 2)
Chuc ban hoc tot
a) \(x^2+5x+6=\left(x+2\right)\left(x+3\right)\)
b) \(x^2+6x+8=\left(x+2\right)\left(x+4\right)\)
c) \(x^2-5x-14=\left(x-7\right)\left(x+2\right)\)
d) \(x^2-9x+18=\left(x-3\right)\left(x-6\right)\)
e) \(x^2-7x+12=\left(x-3\right)\left(x-4\right)\)
f) \(3x^2+9x-30=3\left(x^2+3x-10\right)=3\left(x+5\right)\left(x-2\right)\)
\(x^4+x^2-2=x^4-x^2+2x^2-2 \)
\(=x^2\left(x^2-1\right)+2\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+2\right)\)
\(=\left(x+1\right)\left(x-1\right)\left(x^2+2\right)\)
1/(x+2)2 -(3x-1)2=(x+2+3x-1)(x+2-3x+1)=4x(-2x+3)=-8x2+12x
2/(x4+x2)(-2x3-2x)=x2(x2+1)-2x(x2+1)=(x2+1)(x2-2x)
\(4a^2b^2-\left(a^2+b^2-c^2\right)^2\)
\(=4a^2b^2-2ab\left(a^2+b^2-c^2\right)+2ab\left(a^2+b^2-c^2\right)-\left(a^2+b^2-c^2\right)^2\)
\(=2ab\left[2ab-\left(a^2+b^2-c^2\right)\right]+\left(a^2+b^2-c^2\right)\left[2ab-\left(a^2+b^2-c^2\right)\right]\)
\(=\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)
\(=\left(a^2+ab+ab+b^2-c^2\right)\left[c^2-\left(a^2-ab-ab+b^2\right)\right]\)
\(=\left[a\left(a+b\right)+b\left(a+b\right)-c^2\right]\left[c^2-\left(a\left(a-b\right)-b\left(a-b\right)\right)\right]\)
\(=\left[\left(a+b\right)^2-c^2\right]\left[c^2-\left(a-b\right)^2\right]\)
\(=\left[\left(a+b\right)^2-c\left(a+b\right)+c\left(a+b\right)-c^2\right]\left[c^2+c\left(a-b\right)-c\left(a-b\right)-\left(a-b\right)^2\right]\)
\(=\left[\left(a+b\right)\left(a+b-c\right)+c\left(a+b-c\right)\right]\left[c\left(c+a-b\right)-\left(a-b\right)\left(c+a-b\right)\right]\)
\(=\left(a+b+c\right)\left(a+b-c\right)\left(c+a-b\right)\left(c-a+b\right)\)
a. 6x3-x2-486x+81
= 6x3-54x2+53x2-477x-9x+81
= 6x2.(x-9)+53x.(x-9)-9.(x-9)
= (x-9).(6x2+53x-9)
= (x-9)(6x2+54x-x-9)
=(x-9)[6x.(x+9)-(x+9)]=(x-9)(x+9)(6x-1)
b. x3-5x2+3x+9
= x3+x2-6x2-6x+9x+9
=x2.(x+1)-6x.(x+1)+9.(x+1)
=(x+1)(x2-6x+9)=(x+1)(x-3)2
c. x3+3x2+6x+4
= x3+x2+2x2+2x+4x+4
= x2.(x+1)+2x.(x+1)+4.(x+1)
= (x+1)(x2+2x+4)
d.
a) \(=x^2-2x-4x+8\)
\(=x\left(x-2\right)-4\left(x-2\right)\)
\(=\left(x-2\right)\left(x-4\right)\)
c) \(=x^3-x-6x-6\)
\(=x\left(x^2-1\right)-6\left(x+1\right)\)
\(=x\left(x+1\right)\left(x-1\right)-6\left(x+1\right)\)
\(=x\left(x+1\right)\left(x-1-6\right)\)
\(=x\left(x+1\right)\left(x-7\right)\)
a) \(\left(a+b-c\right)^2-\left(a-c\right)^2-2ab+2ac\)
\(=a^2+b^2+c^2+2ab-2bc-2ac-a^2+2ac-c^2-2ab+2ac\)
\(=b^2-2bc+2ac=b.\left(b-2c+2a\right)\)
b) \(x^4+2x^3+5x^2+4x-12\)
\(=x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12\)
\(=x^3.\left(x-1\right)+3x^2.\left(x-1\right)+8x.\left(x-1\right)+12.\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+3x^2+8x+12\right)\)
\(=\left(x-1\right)\left[\left(x^3+2x^2\right)+\left(x^2+2x\right)+\left(6x+12\right)\right]\)
\(=\left(x-1\right)\left[x^2.\left(x+2\right)+x.\left(x+2\right)+6.\left(x+2\right)\right]\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)
Pạn Khánh Châu ơi
Cái dòng thứ 2 đấy, dấu hiệu nhận biết là j vậy
Mà sao pạn phân tích hay vậy????