E = 36 / 1.7 + 36 / 7.13 + 36 / 13.19 + .... + 36 / 94.100
F = 1 / 10 + 1 / 40 + 1 / 88 + .... + 1 / ( 3a+z) ( 3a+ 5)
G = 1 / 2.3 + 2 / 3.5 + 3 / 5.8 + 4 / 8.12 + 5 / 12.17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{6}{3.5}+\frac{9}{5.8}+\frac{12}{8.12}+\frac{15}{12.17}\)
\(A=3.\left(\frac{2}{3.5}+\frac{3}{5.8}+\frac{4}{8.12}+\frac{5}{12.17}\right)\)
\(A=3.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{12}+\frac{1}{12}-\frac{1}{17}\right)\)
\(A=3.\left(\frac{1}{3}-\frac{1}{17}\right)< 3.\frac{1}{3}=1\)
=> A < 1
đề sai thì phải
\(A=\frac{10}{2\cdot12}+\frac{2}{3\cdot5}+\frac{3}{5\cdot8}+\frac{1}{2\cdot3}+\frac{5}{12\cdot17}+\frac{6}{17\cdot23}+\frac{7}{23\cdot30}\)
\(A=\frac{1}{2}-\frac{1}{12}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{2}-\frac{1}{3}+\frac{1}{12}-\frac{1}{17}+\frac{1}{17}-\frac{1}{23}+\frac{1}{23}-\frac{1}{30}\)
\(A=\frac{1}{2}+\frac{1}{2}-\frac{1}{8}-\frac{1}{30}\)
\(A=\frac{101}{120}\)
\(A=\frac{1}{2.12}+\frac{2}{3.5}+\frac{3}{5.8}+...+\frac{7}{23.30}\)
\(=\frac{1}{2}-\frac{1}{12}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...-\frac{1}{23}+\frac{1}{23}-\frac{1}{30}\)
\(=\frac{1}{2}+\frac{1}{2}-\frac{1}{8}-\frac{1}{30}=1-\frac{19}{120}=\frac{101}{120}\)
Ta có :
\(A=\frac{6}{3.5}+\frac{9}{5.8}+\frac{12}{8.12}+\frac{15}{12.17}\)
\(A=3.\left(\frac{2}{3.5}\right)+3.\left(\frac{3}{5.8}\right)+3.\left(\frac{4}{8.12}\right)+3.\left(\frac{5}{12.17}\right)\)
\(A=3.\left(\frac{2}{3.5}+\frac{3}{5.8}+\frac{4}{8.12}+\frac{5}{12.17}\right)\)
\(A=3.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{12}+\frac{1}{12}-\frac{1}{17}\right)\)
\(A=3.\left(\frac{1}{3}-\frac{1}{17}\right)\)
\(A=3.\frac{14}{51}\)
\(A=\frac{14}{17}< 1\)
Vậy A < 1
_Chúc bạn học tốt_
1/7+1/91+1/247+1/475+1/775+1/1147=? (1)
ta có: (1) <=>: 1/(1.7)+1/(7.13)+1/(13.19)+1/(19.25)+1/(25.31)+1/(31.37)
=1/6.(1-1/7+1/7-1/13+1/13-1/19+1/19-1/25+1/25-1/31+1/31-1/37)
=1/6.(1-1/37)=6/37
a: \(A=x^2-10x+25+1\)
\(=\left(x-5\right)^2+1\)
\(=100^2+1=10001\)
b: \(B=2\left(a^2+a-5a-5\right)-\left(a^2-10a+25\right)+36\)
\(=2a^2-8a-10-a^2+10a-25+36\)
\(=a^2+2a+1\)
\(=\left(a+1\right)^2=100^2=10000\)
c: \(C=a^3+3a^2+3a+1=\left(a+1\right)^3=100^3=1000000\)
d: \(E=a^3+3a^2+3a+1+5\)
\(=\left(a+1\right)^3+5\)
\(=30^3+5=27005\)
Bài 2:
a) 11. x = -55
x = -55 : 11
x = -5
Vậy x = -5
b) -3 . x = -12
x = -12 : (-3)
x = 4
Vậy x = 4
c) 3x - 12 = -48
3x = -48 + 12
3x = -36
x = -36 : 3
x = -12
Vậy x = -12
d) 10 + 23 . (2x - 10) = -36
23 . (2x - 10) = -36 - 10
23 . (2x - 10) = -46
2x - 10 = -46 : 23
2x - 10 = -2
2x = -2 + 10
2x = 8
x = 8: 2
x = 4
Vậy x = 4
f) | 2x - 1| + 3 = 8
|2x - 1| = 8 - 3
|2x - 1| = 5
\(\Rightarrow\left[\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Rightarrow\left[\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy x = 3 hoặc x = -2
g) |2x2 - 3| - 4 = 11
|2x2- 3| = 11 + 4
|2x2 - 3| = 15
\(\Rightarrow\left[\begin{matrix}2x^2-3=15\\2x^2-3=-15\end{matrix}\right.\Rightarrow\left[\begin{matrix}2x^2=18\\2x^2=-12\end{matrix}\right.\Rightarrow\left[\begin{matrix}x^2=9\\x^2=-6\end{matrix}\right.\Rightarrow\left[\begin{matrix}x^2=3^2\\\left(loại\right)\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=3\\\end{matrix}\right.\)
Vậy x = 3.
Bài 1:
\((-48) . 72 +36 . (-304) \)
\(=\left[\left(-48\right).\left(36.2\right)\right]+36.\left(-340\right)\)
\(=\left[\left(-48\right).2\right].36+36.\left(-340\right)\)
\(=\left(-96\right).36+36.\left(-304\right)\)
\(=36.\left[\left(-96\right)+\left(-304\right)\right]\)
\(=36.\left(-400\right)\)
\(=-14400\)
a. 37-7.(x+1)=40-8.3
37 - 7(x+1) = 16
7(x+1) = 21
x+1 = 3
x=2
b. (x+5).3=11=10+(3+4).4
(sao có 2 dấu bằng, dấu nào là dấu cộng do viết nhầm ???)
c. 25-5.3+4.10=100-5.x
50 = 100 - 5x
5x = 50
x=10
d. 36+2.(x-7)=12+8.(3+5)-36
36 + 2(x-7) = 40
2(x-7) = 4
x-7 =2
x=9
e. 3.(x+7)-9=11.5-5-8
3(x+7) - 9 = 42
3(x+7) = 51
x+7 = 17
x=10
E = \(\frac{36}{1\cdot7}+\frac{36}{7\cdot13}+...+\frac{36}{94\cdot100}=\frac{36}{6}\left[\frac{1}{1\cdot7}+\frac{1}{7\cdot13}+...+\frac{1}{94\cdot100}\right]\)
\(=6\left[1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+...+\frac{1}{94}-\frac{1}{100}\right]=6\left[1-\frac{1}{100}\right]\)
\(=6\cdot\frac{99}{100}=\frac{297}{50}\)
F = \(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+...+\frac{1}{\left[3a+2\right]\left[3a+5\right]}\)
\(=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{\left[3a+2\right]\left[3a+5\right]}\)
\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{3a+2}-\frac{1}{3a+5}\right]\)
\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{3a+5}\right]=\frac{1}{6}-\frac{1}{9a+15}\)
G = \(\frac{1}{2\cdot3}+\frac{2}{3\cdot5}+\frac{3}{5\cdot8}+\frac{4}{8\cdot12}+\frac{5}{12\cdot17}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{12}-\frac{1}{17}\)
\(=\frac{1}{2}-\frac{1}{17}=\frac{15}{34}\)
E=36/1-36/7+36/7-36/13+...+36/94-36/100
=36-36/100=891/25