Cho hàm số f(x) xác định và liên tục trên R và có đạo hàm f'(x) thoả mãn f'(x) = (1 - x)(x+2)g(x) + 2023 với g(x) < 0, ∀x∈R. Hàm số y = f(1-x) + 2023x + 2024 nghịch biến trên khoảng nào?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D
Trong khoảng đồ thị hàm số y= f’(x) nằm phía trên trục hoành nên hàm số y= f( x) đồng biến trên khoảng ( 0; π)
Chọn D
Trong khoảng (0 ; + ∞) đồ thị hàm số y= f’( x) nằm phía dưới trục hoành- tức là f’( x)< 0 trên khoảng đó
=> Hàm số y= f(x) nghịch biến trên khoảng
Chọn C
Trong khoảng ( 0; 1) đồ thị hàm số y= f’( x) nằm phía dưới trục hoành nên trên khoảng này thì f’( x)< 0.
=> hàm số f(x) nghịch biến trên khoảng (0; 1) .
Chọn B
Trên khoảng và đồ thị hàm số f’( x) nằm phía trên trục hoành.
=> Trên khoảng ( -∞; -1) và ( 3; + ∞) thì f’( x) > 0.
=> Hàm số đồng biến trên khoảng ( -∞; -1) và ( 3; + ∞)
Vì hàm số xác định trên cả R và y' đổi dấu khi đi qua các điểm -2;-1;1;2 do đó hàm số có 4 điểm cực trị.
Chọn đáp án B.