Cho tam giác ABC vuông tại A . Kẻ đường phân giác BH (H thuộc AC) , kẻ HM vuông góc với BC (M thuộc BC) . Gọi N là giao điểm của AB và MH . Chứng minh rằng:
a) Tam giác ABH = tam giác MBH b) BH vuông góc với AM c) AM song song với CN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ.
a) Xét \(Δ\)ABH vuông tại A và \(Δ\)MBH vuông tại M có:
BH chung
\(ABH=\widehat{MBH}\)(suy từ gt)
=> \(Δ\)ABH = \(Δ\)MBH (ch -gn)
b) Vì AB = BM nên ΔΔABM cân tại B
=> BAMˆBAM^ = BMAˆBMA^
Áp dụng tc tổng 3 góc trong 1 tg ta có:
BAMˆBAM^ + BMAˆBMA^ + NBCˆNBC^ = 180o
=> 2BAMˆBAM^ = 180o - NBCˆNBC^
=> BAMˆBAM^ = 180o−NBCˆ2180o−NBC^2 (3)
Do ΔΔABH = ΔΔMBH (câu a)
=> AH = MH (2 cạnh t/ư)
a, Xét hai tam giác vuông ABH và tam giác vuông MBH có :
góc BAH = góc BMH = 90độ
cạnh BH chung
góc ABH = góc MBH ( vì BH là tia phân giác góc B )
Do đó : tam giác ABH = tam giác MBH ( cạnh huyền - góc nhọn )
b,Theo câu a : tam giác ABH = tam giác MBH
\(\Rightarrow\) BA = BM nên B thuộc đường trung trực của AM
và HA = HM nên H thuộc đường trung trực của AM
\(\Rightarrow\) BH thuộc đường trung trực của AM
Vậy BH vuông góc với AM .
c, Xét tam giác AHN và tam giác MHC có :
góc AHN = góc MHC ( đối đỉnh )
AH = MH ( theo câu b )
góc HAN = góc HMC = 90độ
Do đó : tam giác AHN = tam giác MHC ( g.c.g )
\(\Rightarrow\) AN = MC ( cạnh tương ứng )
mà AB = MB
Suy ra : AN + AB = MC + MB
\(\Rightarrow\) BN = BC
Vậy tam giác BCN cân tại B
\(\Rightarrow\widehat{N}=\widehat{C}=\frac{180^0-\widehat{B}}{2}\) ( 1 )
Ta lại có : Tam giác ABM cân tại B ( vì AB = MB theo câu b )
\(\Rightarrow\widehat{BAM}=\widehat{BMA}=\frac{180^0-\widehat{B}}{2}\) ( 2 )
Từ ( 1 ) và ( 2 ) suy ra :
góc N = góc C = góc BAM = góc BMA
mà góc N = góc BAM ( ở vị trí đồng vị )
\(\Rightarrow\)AM // CN .
Học tốt
a) .
Xét tam giác ABH và tam giác MBH có :
AB = BH(BE là tia phân giác)
góc ABH = góc HBM(BE là tia phân giác)
BH cạnh chung
đo đó : tam giác ABH = tam giác MBH (c.g c) (1)
b)
Từ (1) suy ra:
tam giác ABM cân tại B mà BH là phân giác
=>BE là trung trực của đoạn thẳng AM
a) Xét tam giác vuông ABH và tam giác vuông MBH có:
BH là cạnh chung; góc ABH=góc MBH (do BH là phân giác góc ABC)
=>tam giác vuông ABH = tam giác vuông MBH (cạnh huyền-góc nhọn)
b) \(\Delta ABH=\Delta MBH\Rightarrow\hept{\begin{cases}AB=MB\\AH=MH\end{cases}}\)=>BH là đường trung trực của AM
=>BH vuông góc với AM
a: Xét ΔBAH vuông tại A và ΔBMH vuông tại M có
BH chung
góc ABH=góc MBH
=>ΔBAH=ΔBMH
b: BA=BM
HA=HM
=>BH là trung trực của AM
=>BH vuông góc AM
c: Xét ΔBMN vuông tại M và ΔBAC vuông tại A có
BM=BA
góc MBN chung
=>ΔMBN=ΔABC
=>BN=BC
Xét ΔBNC có BA/BN=BM/BC
nên AM//NC
a) xét tam giác ABH và taam giác MBH có :
AB=BH(BE là tia phân giác)
ABH=HBM(BE là tia phân giác)
BH cạnh chung
=>tam giác ABH =tam giácHBE (c.g c)
b)=>tam giác ABM cân tại B mà BH là phân giác
=>BE là trung trực
=>AHB=MHB=90 độ
c)vì AMC và góc MNC là cặp góc so le trong
=>AM//NC
d)Vì AM//NC(theo c)
mà BH vuông góc với AM
=>BH vông góc với NC (T/C từ vuông góc đến song song)
a) xét tam giác ABH và taam giác MBH có :
AB=BH(BE là tia phân giác)
ABH=HBM(BE là tia phân giác)
BH cạnh chung
=>tam giác ABH =tam giácHBE (c.g c)
b)=>tam giác ABM cân tại B mà BH là phân giác
=>BE là trung trực
=>AHB=MHB=90 độ
c)vì AMC và góc MNC là cặp góc so le trong
=>AM//NC
d)Vì AM//NC(theo c)
mà BH vuông góc với AM
=>BH vông góc với NC (T/C từ vuông góc đến song song)
em mới lớp 6 ko biết chúc chị học giỏi nớ
bn vẽ hình ra nhá r mình lm cho, tại máy mình vẽ hình khó lắm vs lại lâu nữa