Xét phép thử “Tung một đồng xu hai lần liên tiếp”. Tính xác suất của biến cố A: “Mặt xuất hiện của đồng xu ở cả hai lần tung là giống nhau”.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Không gian mẫu trong trò chơi trên là tập hợp \(\Omega = {\rm{ }}\left\{ {SS;{\rm{ }}SN;{\rm{ }}NS;{\rm{ }}NN} \right\}\). Vậy \(n\left( \Omega \right) = 4\)
+) Gọi A là biến cố “Có ít nhất một lần xuất hiện mặt sấp”
+) Các kết quả thuận lợi cho biến cố A là: \(SS;{\rm{ }}SN;{\rm{ }}NS\)tức là \(A = {\rm{ }}\left\{ {SS;{\rm{ }}SN;{\rm{ }}NS} \right\}\). Vậy \(n\left( A \right) = 3\).
+) Xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{3}{4}\)
Xác suất thực nghiệm của biến cố hai đồng xu đều xuất hiện mặt sấp sau 100 lần gieo là \(\frac{{14}}{{100}} = \frac{7}{{50}}\).
Vậy suất thực nghiệm của biến cố hai đồng xu đều xuất hiện mặt sấp sau 100 lần gieo là \(\frac{7}{{50}}\).
+) Không gian mẫu trong trò chơi trên là tập hợp \(\Omega = {\rm{ }}\left\{ {SS;{\rm{ }}SN;{\rm{ }}NS;{\rm{ }}NN} \right\}\). Vậy \(n\left( \Omega \right) = 4\)
+) Gọi A là biến cố “Kết quả của hai lần tung là khác nhau”.
Các kết quả thuận lợi cho biến cố A là: \(SN;{\rm{ }}NS\)tức là \(A = \left\{ {SN;NS} \right\}\).Vậy \(n\left( A \right) = 2\)
+) Vậy xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{2}{4} = \frac{1}{2}\)
Xác suất thực nghiệm của biến cố ngẫu nhiên "Mặt xuất hiện của đồng xu là mặt N" là \(\dfrac{8}{15}\)
Xác suất thực nghiệm này bằng với xác suất của biến cố ngẫu nhiên ở trên
- Biến cố A là biến cố chắc chắn xảy ra vì hai lần tung đều xuất hiện mặt sấp.
- Biến cố B là biến cố chắc chắn xảy ra vì 2 lần đều xuất hiện mặt sấp giống nhau.
- Biến cố C là biến cố không thể vì cả 2 lần đều xuất hiện mặt sấp nên không thể ra mặt ngửa.
* Ta có: Các kết quả thuận lợi để số chấm xuất hiện ở cả hai lần tung giống nhau là:
A= { (1, 1); (2, 2); (3,3); (4, 4); (5,5); (6, 6)}.
⇒ Ω A = 6
* Các kết quả thuận lợi để tổng số chấm xuất hiện ở hai lần tung chia hết cho 3 là:
B = { (1; 2); (2;1); (1; 5); (5; 1); (4; 2); (2; 4); (3; 3); (3; 6); (6;3); (4;5); (5; 4); (6; 6)}
⇒ Ω B = 12
⇒ Ω A + Ω B = 6 + 12 = 18
Đáp án A
a) Sự kiện “Kết quả của hai lần tung là giống nhau” tương ứng với tập con \(A{\rm{ }} = {\rm{ }}\left\{ {SS;{\rm{ }}NN} \right\}\)
b) Tập con \(B{\rm{ }} = {\rm{ }}\left\{ {SN;{\rm{ }}NS} \right\}\) của không gian mẫu \(\Omega \) được phát biểu dưới dạng mệnh đề nêu sự kiện là: “Kết quả của hai lần tung là khác nhau”.
a, Xác suất thực nghiệm xuất hiện mặt N là:\(\frac{13}{22}\)
b,Xác suất thực nghiệm xuất hiện mặt S là:\(\frac{11}{25}\)
c,Số lần xuất hiện mặt S là: 30 - 14 = 16
,Xác suất thực nghiệm xuất hiện mặt S là:\(\frac{16}{30}\)
1. Số phần tử của không giam mẫu: \(6.6=36\)
2. Biến cố A: có 6 phần tử (liệt kê 11, 22,...)
3. B: Ứng với mỗi lần tung thứ nhất, lần tung thứ 2 luôn có 2 biến cố thuận lợi để tổng 2 lần tung chia hết cho 3 (ví dụ lần 1 bằng 1 thì lần 2 bằng 2 hoặc 5). Do đó có tổng cộng \(6.2=12\) biến cố thuận lợi
4. C: Số biến cố thuận lợi là: \(5+4+3+2+1=15\) (ứng với lần tung thứ nhất lần lượt bằng 6, 5, 4, 3, 2)
+) Không gian mẫu của phép thử là: \(\Omega {\rm{ }} = {\rm{ }}\left\{ {SS;{\rm{ }}SN;{\rm{ }}NS;{\rm{ }}NN} \right\}.\) Vậy \(n\left( \Omega \right) = 4\)
+) Các kết quả thuận lợi cho biến cố A là: \(A{\rm{ }} = {\rm{ }}\left\{ {SS;{\rm{ }}NN} \right\}\). Vậy \(n\left( A \right) = 2\)
+) Xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{2}{4} = \frac{1}{2}\)