tim x,y,z biet:x/3=y/4,y/5=z/7 va 2x+3y-z=124
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ 5x +y -2x = 28 => 3x +y = 28
x/10 = y/6 = z/21 = 3x /30= y/6 = 3x +y / 36 = 28 /36 = 7/9
=> x= 70/9 ; y = 14/3 ; z= 49/3
b/
x/3 = y/4 => x/15 = y/20 [1]
y/5 = z/7 => y/20 = z/28 [2]
Từ [1] và [2] => x/15 = y/20 = z/28 = 2x /30 = 3y/60 = z/28 = [2x +3y - z] / [30+60-28]= 124 /62 = 2
=> x= 2 .15 = 30 ; y = 2x20 = 40 ; z= 2 . 28= 56
a, x/3 = y/-4 = z/-5
=> 2x/6 = 3y/-12 = 4z/-20
theo đề bài áp dụng tính chất của dãy tỉ số bằng nhau ta có :
2x/6 = 3y/-12 = 4z/-20 = 2x + 3y - 4z/6 + (-12) - (20) = 70/14 = 5
=> x = 5.3 = 15
y = 5.(-4) = -20
z = 5.(-5) = -25
a)Vì \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)nên \(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{x}{28}\).
Áp dụng t/c dãy tỉ số = nhau, ta có :
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
⇒2x = 3.30 = 90 ⇒ x = 45
3y = 3.60 = 180 ⇒ y = 60
z = 3.28 = 84
Ý b) có gì đó sai sai ?
c)Ta có :
\(2x=3y=5z\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
Áp dụng t/c dãy tỉ số = nhau, ta có :
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)
⇒x = 5.15 = 75
y = 5.10 = 50
z = 5.6 = 30
d)Ta có :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\left(k\in Z\right)\)
⇒ x = 2k ; y = 3k ; z = 5k
⇒ xyz = 2k.3k.5k = 30k3 = 810
⇒ k = 3 Vậy x = 3.2 = 6; y = 3.3 = 9; z = 3.5 = 15\(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}\)
\(\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{y}{20}=\dfrac{z}{28}\)
\(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x}{30}+\dfrac{3y}{60}+\dfrac{-z}{-28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{-124}{62}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=-2\\\dfrac{y}{20}=-2\\\dfrac{z}{28}=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=15.\left(-2\right)=-30\\y=20.\left(-2\right)=-40\\z=28.\left(-2\right)=-56\end{matrix}\right.\)
Ta có: \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x}{15}=\dfrac{y}{20}\left(1\right)\)
\(\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{y}{20}=\dfrac{z}{28}\left(2\right)\)
Từ (1) và (2) suy ra:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\Rightarrow\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{-124}{62}=-2\)
Do đó:
\(\dfrac{x}{15}=-2\Rightarrow x=15.\left(-2\right)=-30\)
\(\dfrac{y}{20}=-2\Rightarrow y=20.\left(-2\right)=-40\)
\(\dfrac{z}{28}=-2\Rightarrow z=28.\left(-2\right)=-56\)
Vậy x = -30; y = -40; z = -56.
\(#Tmiamm\)
Ta có: \(\dfrac{x}{3}=\dfrac{y}{4}\)
nên \(\dfrac{x}{15}=\dfrac{y}{20}\)(1)
Ta có: \(\dfrac{y}{5}=\dfrac{z}{7}\)
nên \(\dfrac{y}{20}=\dfrac{z}{28}\)(2)
Từ (1) và (2) suy ra \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
\(\Leftrightarrow\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\)
mà 2x+3y-z=124
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{124}{62}=2\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{15}=2\\\dfrac{y}{20}=2\\\dfrac{z}{28}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=30\\y=40\\z=56\end{matrix}\right.\)
\(\dfrac{x}{3}=\dfrac{x}{4}\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{20}\\ \dfrac{y}{5}=\dfrac{z}{7}\Leftrightarrow\dfrac{y}{20}=\dfrac{z}{28}\)
\(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x+3y-z}{2.15+3.20-28}=\dfrac{125}{62}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=15.2=30\\y=20.2=40\\z=28.2=56\end{matrix}\right.\)
Từ \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
\(\Rightarrow\left\{\begin{matrix}\frac{x}{\frac{3}{2}}=12\Rightarrow x=12\cdot\frac{3}{2}=18\\\frac{y}{\frac{4}{3}}=12\Rightarrow y=12\cdot\frac{4}{3}=16\\\frac{z}{\frac{5}{4}}=12\Rightarrow z=12\cdot\frac{5}{4}=15\end{matrix}\right.\)
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\); \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{2.15+3.20-28}=\frac{124}{62}=2\)
=> x = 2.15 = 30; y = 2.20 = 40; z = 2.28 = 56