K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2023

Tham khảo:

Dễ thấy: \(\overrightarrow u .\;\overrightarrow v \) cùng dấu với \(\cos \;\left( {\overrightarrow u ,\;\overrightarrow v } \right)\) (do \(\left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right| > 0\)). Do đó:

+) \(\overrightarrow u .\;\overrightarrow v \;\; > 0\)  \( \Leftrightarrow \cos \;\left( {\overrightarrow u ,\;\overrightarrow v } \right) > 0\) hay \({0^o} \le \left( {\overrightarrow u ,\;\overrightarrow v } \right) < {90^o}\)

+) \(\overrightarrow u .\;\overrightarrow v \;\; < 0\) \( \Leftrightarrow \cos \;\left( {\overrightarrow u ,\;\overrightarrow v } \right)\;\; < 0\) hay \({90^o} < \left( {\overrightarrow u ,\;\overrightarrow v } \right) \le {180^o}\)

Vậy \(\overrightarrow u .\;\overrightarrow v \;\; > 0\)  nếu \({0^o} \le \left( {\overrightarrow u ,\;\overrightarrow v } \right) < {90^o}\) và \(\overrightarrow u .\;\overrightarrow v \;\; < 0\) nếu \({90^o} < \left( {\overrightarrow u ,\;\overrightarrow v } \right) \le {180^o}.\)

19 tháng 5 2017

\(\overrightarrow{a}.\overrightarrow{b}=\left|\overrightarrow{a}\right|.\left|\overrightarrow{b}\right|.cos\left(\overrightarrow{a},\overrightarrow{b}\right)\).
Vì vậy:
\(\overrightarrow{a}.\overrightarrow{b}< 0\) khi \(cos\left(\overrightarrow{a},\overrightarrow{b}\right)< 0\) hay \(90^o< \left(\overrightarrow{a},\overrightarrow{b}\right)\le180^o\).
\(\overrightarrow{a}.\overrightarrow{b}>0\) khi \(cos\left(\overrightarrow{a},\overrightarrow{b}\right)>0\) hay \(0^o\le\left(\overrightarrow{a},\overrightarrow{b}\right)< 90^o\).
\(\overrightarrow{a}.\overrightarrow{b}=0\) khi \(cos\left(\overrightarrow{a},\overrightarrow{b}\right)=0\) hay \(\left(\overrightarrow{a},\overrightarrow{b}\right)=90^o\).

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

 Ta có: \(\overrightarrow u  = \left( {0; - 5} \right),\;\overrightarrow v  = \left( {\sqrt 3 ;1} \right)\)

\( \Rightarrow \overrightarrow u .\;\,\overrightarrow v  = 0.\sqrt 3  + \left( { - 5} \right).1 =  - 5.\)

30 tháng 3 2017

Giải bài 3 trang 62 sgk Hình học 10 | Để học tốt Toán 10

8 tháng 7 2017

Giải bài tập Toán lớp 10

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Ta có: \(\overrightarrow a .\overrightarrow b  = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\)

\( \Leftrightarrow 12\sqrt 2  = 3.8.\cos \left( {\overrightarrow a ,\overrightarrow b } \right) \Leftrightarrow \cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\sqrt 2 }}{2}\)

\( \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 45^\circ \)

Vậy góc giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) là \(45^\circ \)

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

\(cos\left(\alpha-\beta\right)=x_M\cdot x_N=cos\alpha\cdot cos\beta+sin\alpha\cdot sin\beta\\ cos\left(\alpha+\beta\right)=cos\left[\alpha-\left(-\beta\right)\right]=cos\alpha\cdot cos\left(-\beta\right)+sin\alpha\cdot sin\left(-\beta\right)=cos\alpha\cdot cos\beta-sin\alpha\cdot sin\beta\)

12 tháng 9 2018

Tích vô hướng của hai vec tơ a và b:

Giải bài 3 trang 62 sgk Hình học 10 | Để học tốt Toán 10

a.b đạt giá trị lớn nhất bằng Giải bài 3 trang 62 sgk Hình học 10 | Để học tốt Toán 10 ⇔ a và b cùng hướng.

a.b đạt giá trị nhỏ nhất bằng Giải bài 3 trang 62 sgk Hình học 10 | Để học tốt Toán 10 ⇔ a và b ngược hướng.

29 tháng 1 2017

Đáp án B

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Ta có:  \(\overrightarrow {OM}  = \left( {2;1} \right),\overrightarrow {MN}  = \left( { - 3;2} \right),\overrightarrow {MP}  = \left( {2;1} \right)\)

b) Ta có: \(\overrightarrow {MN} .\overrightarrow {MP}  =  - 3.2 + 2.1 =  - 4\)

c) Ta có: \(MN = \left| {\overrightarrow {MN} } \right| = \sqrt {{{\left( { - 3} \right)}^2} + {2^2}}  = \sqrt {13} ,MP = \left| {\overrightarrow {MP} } \right| = \sqrt {{2^2} + {1^2}}  = \sqrt 5 \)

d) Ta có:  \(\cos \widehat {MNP} = \frac{{\overrightarrow {MN} .\overrightarrow {MP} }}{{\left| {\overrightarrow {MN} } \right|.\left| {\overrightarrow {MP} } \right|}} = \frac{- 4}{{\sqrt {13} .\sqrt 5 }} = \frac{- 4}{{\sqrt {65} }}\)

e) Tọa độ trung điểm I của đoạn NP là: \(\left\{ \begin{array}{l}{x_I} = \frac{{{x_N} + {x_P}}}{2} = \frac{3}{2}\\{y_I} = \frac{{{y_N} + {y_P}}}{2} = \frac{5}{2}\end{array} \right. \Leftrightarrow I\left( {\frac{3}{2};\frac{5}{2}} \right)\)

Tọa độ trọng tâm G của tam giác MNP là: \(\left\{ \begin{array}{l}{x_G} = \frac{{{x_M} + {x_N} + {x_P}}}{3}\\{y_G} = \frac{{{y_M} + {y_N} + {y_P}}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_G} = \frac{5}{3}\\{y_C} = 2\end{array} \right. \Leftrightarrow G\left( {\frac{5}{3};2} \right)\)