Cho tam giác ABC, tia phân giác của góc A cắt BC tại D. Tính goác ADC biết rằng:
a) góc B = 700 , góc C = 300 b) B – C = a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC có
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\\ \Rightarrow\widehat{A}=180^0-\widehat{B}-\widehat{C}\\ =180^0-70^0-30^0=80^0\\ Mà.AD,là.phân.giác.\widehat{BAC}\\ \Rightarrow\widehat{BAD}=\widehat{CAD}=\dfrac{\widehat{A}}{2}=\dfrac{80}{2}=40^0\)
Ta có góc B - góc C = 30 độ
(góc B + góc A1) - (góc C + góc A2) = 30 độ
góc D2 - góc D1 = 30 độ
mà D1 + D2 = 180 độ (kề bù)
⇔ góc D1 = (180 độ - 30 độ) : 2 = 75 độ
góc D2 = 180 độ - 75 độ = 105 độ
Vậy góc ADB = 75 độ; ADC = 105 độ