1. Tìm số tự nhiên a có tính chất:
a + 30 và a - 11 đều có kết quả là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi các số tự nhiên cần tìm là x
ta có :
\(x-100=k^2\left(k\inℕ\right)\)
\(\Rightarrow x=k^2-100\)
\(x+100=q^2\left(q\inℕ\right)\)
\(\Rightarrow x=q^2+100\)
\(\Rightarrow k^2-q^2=200\)
\(\Rightarrow\left(k-q\right)\left(k+q\right)=200\)
do k-q<k+q nên ta có bảng sau
k+q | 200 | 100 | 50 | 40 | 25 | 10 | ||
k-q | 1 | 2 | 4 | 5 | 8 | 20 | ||
k | ko thuộc N | 51 | 27 |
|
| 15 | ||
k2 | 2601 | 729 | 225 | |||||
x | 2501 | 629 | 125 |
kết quả x ở trên
(thông cảm chứ bài này bạn hỏi lâu rồi giờ tớ mới biết :))) )
Gọi a + 3 0 = m^2 => a = m^2 - 30 (1)
a - 11 = n^2 => a = n^2 + 11 (2)
Từ (1) và (2)
=> m^2 - 30 = n^2 + 11
=> m^2 - n^2 = 11 + 30
=> m^2 + mn - mn - n^2 = 41
=> m( m + n) - n( m + n) = 41
=> ( m - n)( m + n) = 41
Vì 41 là SNT và m - n < m + n
=> m - n = 1
m + n = 41
=> m = 21 ; n = 20
(+)a + 30 = m^2
=> a + 30 = 21 ^2 = 441
=>a = 441 - 30
=> a = 4 11
Vậy a = 411
Hỏi bài khốc búa thế
Thank you