Một người đứng ở điểm A trên một bờ sông rộng 300 m, chèo thuyền đến vị trí D, sau đó chạy bộ đến vị trí B cách C một khoảng 800 m như Hình 34. Vận tốc chèo thuyền là 6 km/h, vận tốc chạy bộ là 10 km/h và giả sử vận tốc dòng nước không đáng kể. Tính khoảng cách từ vị trí C đến D, biết tổng thời gian người đó chèo thuyền và chạy bộ từ A đến B (qua D) là 7,2 phút.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Đặt H Y = x 0 ≤ x ≤ 8 khi đó thời gian người đó đến Z là: f x = 1 6 9 + x 2 + 1 8 8 − x
f ' = x 6 9 + x 2 − 1 8 = 4 x − 3 9 + x 2 24 9 + x 2 ⇒ f ' = 0 ⇔ x = 9 7
⇒ M i n f = M i n f 0 ; f 8 ; f 9 7 = M i n 3 2 ; 73 6 ; 7 8 + 1 = 1 + 7 8
Gọi BM=x km (0<x<7)
=> MC=7-x (km)
Ta có: \(AM = \sqrt {A{B^2} + B{M^2}} \)\( = \sqrt {16 + {x^2}} \left( {km} \right)\)
Thời gian từ A đến M là: \(\frac{{\sqrt {16 + {x^2}} }}{3}\left( h \right)\)
Thời gian từ M đến C là: \(\frac{{7 - x}}{5}\left( h \right)\)
Tổng thời gian từ A đến C là 148 phút nên ta có:
\(\begin{array}{l}\frac{{\sqrt {16 + {x^2}} }}{3} + \frac{{7 - x}}{5} = \frac{{148}}{{60}}\\ \Leftrightarrow \frac{{\sqrt {16 + {x^2}} }}{3} + \frac{{7 - x}}{5} = \frac{{37}}{{15}}\\ \Leftrightarrow \frac{{5\sqrt {16 + {x^2}} }}{{15}} + \frac{{3.\left( {7 - x} \right)}}{{15}} = \frac{{37}}{{15}}\\ \Leftrightarrow 5\sqrt {16 + {x^2}} + 3.\left( {7 - x} \right) = 37\\ \Leftrightarrow 5\sqrt {16 + {x^2}} = 16 + 3x\\ \Leftrightarrow 25.\left( {16 + {x^2}} \right) = 9{x^2} + 96x + 256\\ \Leftrightarrow 16{x^2} - 96x + 144 = 0\\ \Leftrightarrow x = 3\left( {tm} \right)\end{array}\)
Vậy khoảng cách từ vị trí B đến M là 3 km.
Đáp án D
Thời gian đi từ A đến B là t A B = 3 2 + 8 2 6 = 73 6 h .
Thời gian đi từ A đến C rồi đến B là t A C B = 3 6 + 8 8 = 3 2 h
Gọi C D = x k m ⇒ t A D B = x 2 + 9 6 + 8 − x 8 h .
Xét hàm số f x = x 2 + 9 6 + 8 − x 8 0 ≤ x ≤ 8
f ' x = x 6 x 2 + 9 − 1 8 ⇒ f ' x = 0 ⇔ x = 9 7 .
Suy ra f 0 = 3 2 = t A C B , f 8 = 73 6 = t A B , f 9 7 = 1 + 7 8 .
Suy ra thời gian ngắn nhất bằng 1 + 7 8 h .
Đáp án A
Phương pháp: Sử dụng phương pháp hàm số.
Cách giải: Gọi độ dài đoạn MB là x
Tam giác ABM vuông tại B =>
Thời gian người đó đi từ A tới C:
Xét hàm số f(x)
=> x = 2 5
Vậy, để người đó đến C nhanh nhất thì khoảng cách từ B đến M là 2 5
Đặt BM = x (0 ≤ x ≤ 7) => MC = 7 - x. Áp dụng định lí Py-ta-go cho tam giác vuông ABM có
Thời gian đi từ A đến M là
thời gian đi từ M đến C là
Tổng thời gian đi từ A đến C là
Bảng biến thiên
Để người đó đến kho nhanh nhất thì thời gian đi cần ít nhất, tức t đạt giá trị nhỏ nhất. Dựa vào bảng biến thiên ta thấy t đạt giá trị nhỏ nhất tại x = 2√5 ≈ 4,5
Vậy vị trí điểm M cách B một khoảng là 4,5km thì người đó đến kho là nhanh nhất.
Chọn B
Gọi v1 là vận tốc thuyền máy so với nước. v2 là vận tốc nước so với bờ, v3 là vận tốc thuyền chèo so với nước, S là chiều dài quãng đường AB
a) Thuyền chèo chuyển động xuôi dòng từ A đến B thì thuyền máy chuyển động xuôi dòng từ A đến B hai lần và một lần chuyển động một lần từ B đến A.
Thời gian chuyển động của 2 thuyền bằng nhau ta có :
\(\frac{S}{v_3+v_2}=\frac{2S}{v_1+v_2}+\frac{S}{v_1-v_2}\Leftrightarrow\frac{1}{v_3+4}=\frac{2}{24+2}=\frac{1}{24-4}\)
\(\Leftrightarrow v_3=4,24\) (km/giờ)
b) Thời gian chuyển động xuôi dòng của thuyền máy từ A đến B là :
\(t_1=\frac{S}{v_1+v_2}=\frac{14}{24+4}=0,5\) giờ
Trong thời gian này thuyền chèo đã đến C.
\(Ac=S_1=\left(v_2+v_3\right)t_1=\left(4+4,24\right)0,5=4,12\)( km)
Chiều dài CB là \(S_2=S-S_1=14-4,12=9,88\) (km)
Trên quãng đường S2 2 thuyền gặp nhau tại D.
Thời gian đi tiếp để 2 thuyền gặp nhau tại D là :
\(t_2=\frac{S_2}{\left(v_2+v_3\right)+\left(v_1-v_2\right)}=\frac{9,88}{\left(4,24+4\right)+\left(24-4\right)}=0,35\) giờ
Quãng đường để thuyền máy đi từ B đến A gặp thuyền chèo tại D.
\(BD=S_3=\left(v_1-v_2\right)t_2=\left(24-4\right)0,35=7\) (km)
Không kể 2 bến A và B hai thuyền gặp nhau tại D cách B 7 km , cũng cách A 7km
Đáp án B
Trước tiên ta xác định hàm số f(x) là hàm số tính thời gian người canh hải đăng phải đi.
Đặt BM= x , CM =7-x-> A M = x 2 + 25 . Theo đề ta có ngưới canh hải đăng chèo từ A đến M trên bờ biển với v = 4km/h rồi đi bộ đến C với v = 6 km/h
⇒ f ( x ) = x 2 + 25 4 + 7 − x 6 = 3 x 2 + 25 − 2 x + 14 12 với x ∈ ( 0 ; 7 )
f ' ( x ) = 1 12 3 x x 2 + 25 − 2 f ' ( x ) = 0 ⇔ 3 x x 2 + 25 − 2 = 0 ⇔ 3 x − 2 x 2 + 25 = 0 ⇔ 2 x 2 + 25 = 3 x ⇔ 5 x 2 = 100 x ≥ 0 ⇔ x = ± 2 5 x ≥ 0 ⇔ x = 2 5
Vậy đoạn đường ngắn nhất thì giá trị phải nhỏ nhất
f ( 0 ) = 29 12 f ( 2 5 ) = 14 + 5 5 12 f ( 7 ) = 74 4
Vậy giá trị nhỏ nhất của f(x) là 14 + 5 5 12 tại x= 2 5
Nên thời gian đi ít nhât là BM= x = 2 5
Đổi 300 m =0,3 km, 800 m = 0,8 km
7,2 phút =0,12(h)
Gọi khoảng cách từ C đến D là x (km) (0,8>x>0)
Khi đó, DB=0,8-x (km)
Theo định lý Py-ta-go ta có: \(AD = \sqrt {A{C^2} + C{D^2}} \)\( = \sqrt {0,{3^2} + x^2} \) (km)
Thời gian đi từ A đến D là: \(\frac{{\sqrt {0,{3^2} + x^2} }}{6}\left( h \right)\)
Thời gian đi từ D đến B là: \(\frac{{0,8 - x}}{{10}}\left( h \right)\)
Tổng thời gian người đó chèo thuyền và chạy bộ từ A đến B là 7,2 phút nên ta có phương trình:
\(\begin{array}{*{20}{l}}
{\frac{{\sqrt {0,{3^2} + {x^2}} }}{6} + \frac{{0,8 - x}}{{10}} = 0,12}\\
{ \Leftrightarrow 5.\sqrt {0,{3^2} + {x^2}} + 3.\left( {0,8 - x} \right) = 0,12.30}\\
{ \Leftrightarrow 5.\sqrt {0,{3^2} + {x^2}} - 3x - 1,2 = 0}\\
{ \Leftrightarrow 5.\sqrt {0,{3^2} + {x^2}} = 3x + 1,2}\\
{ \Rightarrow 25.\left( {0,{3^2} + {x^2}} \right) = {{\left( {3x + 1,2} \right)}^2}}\\
{ \Leftrightarrow 25.\left( {{x^2} + 0,09} \right) = 9{x^2} + 7,2x + 1,44}\\
{ \Leftrightarrow 16{x^2} - 7,2x + 0,81 = 0}\\
{ \Leftrightarrow x = 0,225 \, \, \, (TM)}
\end{array}\)
Vậy khoảng cách từ vị trí C đến D là 225m.